
Independence of random variables

We all have an intuitive sense of what it means for two events to be independent of
each other. And sometimes mathematics captures intuitive notions by constructing
intuitive formal definitions. But sometimes it does not, and independence is one of
them. Formally, independence of random variable is defined as:

Definition. Let (X,F,µ) be a probability space and consider a
family of random variables {fi}i∈J where each fi : X → R. We will
say that the random variables {fi}i∈J are independent if and only if
for every choice of measurable sets {Ai}i∈J in R, the family of sets
{f−1

i (Ai)}i∈J is independent.

I would like to spend a little time explaining what this definition means, perhaps
with some pictures. To begin, the definition of independence for random variables
relies on the notion of independence for measurable sets. Let us recall that definition
first:

Definition. Let (X,F,µ) be a probability space and {Bi}i∈J be a
family of measurable sets, that is, each Bi ∈ F. We will say that
the sets {Bi}i∈J are independent if and only if for any finite subset
I ⊂ J, we have

µ
(⋂
i∈I

Bi

)
=

∏
i∈I

µ(Bi).

It is easiest to understand what independence means when thinking just about
two sets. The condition for B1 and B2 to be independent requires that µ(B1∩B2) =
µ(B1) ·µ(B2), but it may be easier to see what is going on by writing this equation
as:

µ(B1 ∩ B2)

µ(B1)
= µ(B2).

The right side can be thought of as the proportion of points in X that lie in B2.
The left side is the proportion of points in B1 that lie in B2. Independence means
that if we restrict our world from X to B1, the proportion of points belonging B2

stays the same.

Example. As an example of sets that are not independent, let X be the set of all
people in the world, B1 be the set of mathematicians, and B2 be the set of toddlers.
For the sets B1 and B2 to be independent, we would need the proportion of B2 in
X to equal the proportion of B2 in B1. The former is around 2%, while the latter
is very close to 0%.

If you are willing to think of measure geometrically as something that measures
area, we can draw a diagram to explain independence. See Figure 1 below. Note
that you have to draw the sets B1 and B2 somewhat carefully so that the measure
of their intersection is indeed the product of their respective measures. The sets in
the left diagram are independent, while the ones on the right are not!
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Figure 1. For independent sets in a probability space X, the mea-
sure of their intersection is exactly the product of their measures.

There is a slightly different way to think about independent sets, which is really
just another way of saying what we have said above. The question that indepen-
dence is trying to answer is whether knowing whether an element lies in the set B1

influences the probability of it lying in the set B2. For instance, if you are selecting
a person at random from the entire world population, are you just as likely to select
a toddler if you are choosing from among mathematicians?

We are now ready to talk about independent random variables. For a random
variable f : X → R, the definition starts with a measurable subset A of R, and then
examines its preimage f−1(A). Using pictures, we are looking at something like
Figure 2:
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Figure 2. Preimage of random variable f in probability space X.

For two random variables f1 and f2 to be independent, the picture is a little
more complicated. The sets f−1

1 (A1) and f−1
2 (A2) need to be independent for all

possible choices of A1 and A2. That is, we need

µ(f−1
1 (A1) ∩ µ(f−1

2 (A2)) = µ(f−1
1 (A1)) · µ(f−1

2 (A2))

to always hold. In Figure 3, this is illustrated using sets:
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Figure 3. Independence of the random variables f1 and f2 de-
pends on the measure of the intersection of the preimages for any
two measurable subsets of R.

Example. Suppose that X is a set of people, f1 assigns each person their weight,
and f2 does the same with height. Now choose a range of weights A1 and a range
of heights A2. For these random variables to be independent, we would need the
set of people whose weight lies in A1, that is, f

−1
1 (A1), to be independent from the

set of people whose height lies in A2, that is, f
−1
2 (A2), for all possible choices of A1

and A2.

The independence condition for random variables is practically tricky to verify
as one has to show something is true for all choices of subsets A1 and A2. But this
condition is important. The goal is to make sure that there is no set of values A1

of f1 that can give us extra information about when f2 takes values on another set
A2.


