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£ 1. Inrropueiion.

By clementary geomitry we shall megn the one describeé in Milbert's Grundlagen der
Geometrie in which nov notion of differéntistion is involved, as 3 contrast to differential peome-
try. Yo ig well kpown by the theoren: of Tamski thet the ordiniry Euclidean geometry, as
one of such clementary geormetries, is decidadle, or in our terroinology, mechanivably in the
following sensés There exisis in algorithmic method by which any "iheorémn™ or 1 geometrical
siztement meaningful in the geométry in question can bé shown, in 2 fiwie nomber of steps,
to be either trie s o real Hheorém, or False so that dt Is net o theorem at all. Any elementary
geometry possessing such am algorithmic method will be said o br mechanivable, and the the-
oreni in asseriing that the geomenry in guestion does possess suck an &lgocithunic method will be
called a Mevhanizution Thearém. la the mechanfzsble case we mmay progragn  secording w the
algorithm shown fo exist and practise op a computer o that the proof (or disproof) of a the-
crem in that geometry may be carried out én the compunter. This meéthod will be called mecka-
nical theorers proving for shore. It will lead to what may be called smcohanical thesrem dis-
covering of now theorems. We remark that o)l these notions can bé naturally extended o the
case of a given class of theorems or meaningiul swrements in the prowetry in question, not
necessarily 1o the geomeiry as 2 whole, In this sense the Theorers of Tarsdhi menionsd muy
be called the Mechanivation Thearem of ordinary Buchdean peomerry. Howeser, the algorithmic
procedure given by Tarski, even with the great simplificacions due to Seidenberg, it too com-
plicated 1o be feasible. Tn fact, po theorenn of any geommetrical lorterest seerd io have been
praved in this way up to the presént day, On the other hund, the suthor discovered in 1977
an algorithmic method which Jeads 10 Mechanizarion Theerems of many kinds of elementary
geotnetries Including the ordinary Buclideen geometry; us lang a5 we restrict oupselves o the
class of theatems ivelving to order refations.  What is important 1o us is that sur methed is
vesy effictent, In fset, in e pasp yesrs we have propramed on seme small compuwers snd ar-
rived at the pronf and discovery of gudte mwnwivial theorems. Mr. 8. C. Chou, now at Unis
versity of Texas ut Awstin, USA; has also practised op some comgpueer there, oo the basis «of
our glgorithm, and proved some [nterestisig new theorewss. The present paper is simned 2y ex-
plaining the basic prinaples undedlying our method with some itlustrative examples about the
theoréms proved or discovered in this wey.

Consider & certain kind of geométry in the sonse of Hilbert, As shown 3o the classical
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Grundlagen of Hitbert, in starting from the defining nxiomatic systes of the geomelty e
may imtroduce some nuimber system inwinsically associated to that geometry and then to coor-
dinate systems which will turd any peometriesl entities and relations into algebraic ones. Let
us restrict purselves to the case thet the georoetry admits some sxiom of infinity as well as
some Puscalinn axioin so that the number system is a commutative field of charscteristic 0.
The algebraic relations corresponding to the pgrometrical relstions occuring in & theoren will
then be polynomisl equations, pelynomisl inequations, or polynomisl inequalities, with cockfi
cients in the ussocisted ficld, or even with rational or integer coefficients, us is unually the case.
Now let us regrict ourselves furher 10 the case that no order relafons and axformis ire in-
volved in the grométry in question or 1o & restricted class of theorsms in which no order rela-
dons are involved, Tn the algebraic telations above there will appear only polynomis! equs-
tions and inequations but not any polynomdal inequalitier, Remark farther ther all theorems in
peomeuies are netually only gemerically true, or trae only wnder some non-degenerucy condi-
tions which are usually not easy to br made explicit and thus only implicidy sssumed in rthe
statement of theotems. Tt wrns ont that the problem of miechanical thesrem proving in the
restricted cases mentioned sbove it algebraically equivalent to the followlng ones

Problem, Given a system £ of polynomial cquations (ar equivalendy, system of polynos
miels) us well as snother palynamial g, all in the same finlte set of varsables By cevy de
cide in 3 finite number of sops cither of the two cuses belows '

Case 1. A finite sot of polynomials D, is devermined such that g == 0 is ¢ consequ-
ence of the tystem Z under the non-degeneracy conditions D, %% 0 such that D=0 are theme
selves not conseguences of the gystem I,

Case 2. No such set § == {D,} can exisr s6 thar Case 1 helds,

In the above formulated problem in the slgebraic form the polynamisls in T correspond
ro the hypotheses and g the conclusion of the theorem in question whose truth s to be decie
ded,  The theorém is séén to be generically tros in Case 1 under the nan-degeneracy con-
ditionis [, 94 0 found during the procedure but not so in Case 2. The polynomisls natiurally
have their coeffivients in the field intrinsically assocluted to the geopwerry considered. A solu-
tion of the above problem consttutes’ the Mechanizetion Theorem of geometricy in the algebraic
form. The algoridim &n Curnishing such a soluton as well a5 the proof will be glven in Sece-
tion 4. In Sections 2 ind 3 we shall make somie preparadens. All these depend heavily on
the works of J. F. Rin as exhibited in his two books {2, 31, which secm ro be however
undeservedly litde known in the present days.

§ 2, Weit-onceunse or a4 PorynowmiAL Ser.
In what follows K will be a fixed besic Reld of characteristic 0, Consider two sets of
variabes
fin “a e 2Bd kv En,
wrranged in 3 fixed order
“1A<I LIRS d\‘.uca(\"rial‘: L .<er
We shall consider u linear space K™ of dimension ¢ + N aver the fild Ky with 2 basis
corcesponding €0 Wes* <y Hey ¥y vy Ty, In what follows by a polynamisl we shall shways
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meuan onc in the variables sy <<~y 8.y X,y ** ¢y iy with coefficients in K, {.¢., an clement
in the ring Kluys?* <5t s * s ¥xl,
A mobophia]

o oatdes calefiooasiy (e € KDy

will sometimes be written in the simple form o
p= X%, =i s ids M oww Gongs <o os mg)
or
g az"y oo (Te M) = (s <y der iy ey mn)~
H o9 0, and the last one w0 ie the N-wple (mys <>y mn) is my, then we say that
the monomial Is of clasr p3 ctherwise we say thai the class of the monomial w+ 0 s 0 .In
that case in g there oceurs ar most « buf got x,
For two sers of non-nogative intégets
® == (ﬁﬂ “rey il{}:; if;’ e (7(’:! FEEy E'r)
we say that & précéder s or § follews &, which is denoted &
af of firdy
ff there is some & such that
Ghp ™ bipgy *t vy b= by

while ey << 5. Far two non-zere monomfals

L= anpiplexle cexdy, a0,

= bulr e sudeToo N, bR,
we say that & precedes p o p folloivs A5 which i denoted as

- ,u ar @3
if
(s rrpdon by ooy [ﬁ)"i‘ifn EARPD PR TR 'MN).
Any non-zero pelynomial F can be written 3n the form
F o= a2 o gyp%umis s 45— g2™
in which

s €Ky a9 0y 000, 0, 9% Oy
f‘t'}'fﬁ} Rl N

In that cuse we say that ozt is the leading term of F, and the cass of 2% will be called
the class of F, ,

I n aon-zero polynomisl ¥ has its class = pi~0; =nd the leading ierm a6 of F has
its Cegree in xp = s, then F-can be written in the Form

F = qu-_p + Cﬁt‘y’q +oevs c:iv’

i which the €' are alf pulynamzals n & md ¥ip Yy Lpegs mnram!ng tiont of ;r,, Lpiin

vy xys with €o 5% 0 in partievlar. The polynomiad €, will then be called the inial of F.
IE the leading torm of Cy is ¢y then the Jezdmg termn of F iy clcarly Cutl.

Contidet w0 tidi-2ero polynomizls F and G und any vanablr: ¥po M the highest degree
of xy wppesring in F iv less than that In G, then we say that F has 2 Jower rark than G
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Such 2 sequence will be called an awending set it cithér (a) or (b) below halds true:

() r=1and 4, #0;

() r=> 15 0 < cass (4,) < clasy (3} <2 vo< < class (A5 and meoreover 4; is
reduced with réspect to A; for each paiv f 3> 4,

It §s clear that for an sscending sét one alwayy bas r <IN,

An sseending st will be sald to be comrradiciary i€ =2 by A, %5 0 with class () =
R '

Given « second ascending sst :
By Biy ceiy By _
we éi:y thit s has o Figher rank than S8 or @ ¢ Jower vank than e which & dencied
as ‘

o i or @’{ o s
1E either (aY or (b)) below halds trust
(1) There is some § & min(r o) such ikat
A[ e B;p iy t’{fgl o B}..j', ﬂ'}ﬁ[ﬁ- Aj}Bi;
(b)Y s> r and '
Ay~ By -+ ptf "“"Hr-h

If ncither of the axenditg sets .o ind G5 is of higher rank than the. other, thcn we
say that o'y 5B are of the same ronk, denoted o8 oo =~ S8, In that case we have

rﬂ.r: and A’IgN-Blg vEa A MBr. ) ) :

It i¢ clear that the colleetion of sll ascending wts is parfially ordored by iha rank. Henes
for any set of sscending seis we can speak of the notfon of minfral aicending sety i it exists,
The following lemma, simple as it i, will play a important role in the whale théory,

Lemwma 1. Lo

¢K? QIH ii:’@’t’ LR
be a4 sequence of aseending icts Oy for which the rank never iverewes, or for any g we bave
ather Py <Py or Qgyy ~ B Then there is an mdﬁx g such that Jor mry §>q we
have

B @q’ bl @q!. . .

In other mords, there s some g such that any g for which g2 ¢ s a minimal asceoding
set of the abave sequcrice, : :

Froof. -For the asiending set @, let vs denote by #y its number -of poI) twmmh and by
Aq the first polynomial in the st Then :

Ayg dyy vios dyy von

is a sequence of polynomials for which the tank never increases, or for any g we bave either
A< dy or dggs ~ dq. Consequently for any g we have class (dg) S das (dy) and
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or G has 3 higher rank thin F with respect 1o xp, We sy that F and G have the same
rank with respect vo % when neither i of higher rank than the other.

For two non-zero polynomisls F snd G we say thut P hus 1 lower rank thas & or G
5 higher rank than F; which iz denoted a1

FLG or GrF;

i one of the following nyo eases occurs:

1. cdass F < class Gj ,

2, cast F = class Gy say; = p = 0, while the degrec of x5 in F i less than thst of
¥y i G, or in other words, F has lower rank than G with respect 1o x5,

In the case geither of ¥ snd & is of higher ar lower rank than the other, F and ¢
will be taid to be of the same ramk, dencted as

Ferog,

For example, twé hon-zero polynomizls are of the same rank if both are of dass = 0,
Let F be o polynomial of class p > D, Any polynomial € of rank lower than F with res
pect to xp will be said to be reduced with respect to F, Clearly the inftial of F is of class -
p and is alteady redoced with respect w F,

Let F be of class p = 0§ written in the forin

F= fﬂ? + fl-‘-‘;’Fi RRlR?
in which
[ € Kluyy »o oy Hey Tyg "t %5 Xpols fd’#’ﬂ-‘
Any non-zero palynomial G which has not heeti reduced with respect to Fcan then always
be writes in the form
G = goaf b k™ b oov o By
in which ' '
g €Kiy mv oty 15 705 Hpops s 77 05 A )
and
EG :'é' 0) M ; my

By the division afgorithm of polynomials, we would get, in dividing G by F, an expres-
sion of the form
where @, R are both polynomials with, in the case R # D, the degree of x, in R < s
that R is already reduced with respect to P. The integer ¢ will be determined is the small-
et to make possible such an expression that ¢ is unique and s=<C M s IE G is already
reducsd with respect to F, then we can simply iake sw 0, Q=90, R= G so thit the
sbove expression holds true still, In any wiy, the polynemial R will be called the remainder
of G with respect to Fo The procedure to ger the remsinder R from G will then be called
the reduction of G with respect to F,

o what follows we shall consider séquences formed by 2 Einite number of polynomials
A¢ like the one below.
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in the case clace (doaa) = class (Ag)s say, == p> 0 the degres in xp of Ay, should be
< the corresponding degree in 2y of Ay As both cless asd degree are non-negative integers,
tiere should be some index 7, such that all 4, are of the same rank for q 2= 41,

It there is some ] 2 ¢, such that all ro= [ for any g 3 g, then the lemma s clear
ly true, Suppose the conirary. Then theee should be sime 4} 22 4, such that &l 7, 2 2 for
any ¢ 2= ¢i. Denote the second polynomial in such @, by AP, Then

1 g ir (.
di;}"{:;i-t' FRiy fg(i:la"'

will be a sequeace of polynemials with nondincreasing ronks. As before there will then be
some gy 2 gy such thet all 45 wre of the same renk for My § 24 2= ¢ 2 g

It all 7y 2, then the lemma is proved already. Suppuese the contrary, Then there will
be sotne g} 22 qy such that all ry 2 3 for any 4 2= g} and we miay take the third polynemisk
AF" in soch @.s to forty 2 sequence of polynomials with non-increasing ranks. As For all g
we have ry << ny so procecding in this way we should sop at some » and wme g such
that for all g 2= " we have rg == 5 and the r-th polysowdals taken Frem such @y will all
have the same rank. Tr follows that all such @5 will have the same rank and the lemimg i3
priveed. '

From this lemmz we ger the Foliowing

Lemunis. Y, If i o sequence of ascending sets the ranks are steadily decreasing, thew
such a sequence can only be composed of a finite mimber of dstending sefs,

Suppose pow we have 3 non-empty collection 3 = {#,} of non-zero polynionials F,. An
ascending set L of polynemisls will be said to belong 1o ¥ if each polyvomist in o be-
longs to I, Since esch single F, 9% 0 forms by itself an uscending set, such ecending st
belonging to ¥ exit saturally, Any minimal ascending st of the collection of sl sscend:
ing sets belonging to & will thea be called 4 Basic sei of 5,

The following lemma points owt not enly the existence of such basic sets bur also somi
constructive method of arriving at such basic ses. , .

Lemmn 2. Let X be a finite set of non-zers polynomials. Then X hay rniceessarily
basic sets and there i @ mechanival piethod in geifing meh & basic ict in a finite number of
sHeps, '

- Proof.  As X is finite, the existence of basic wts is quite evident. So th problem redu-
ces 1o the méchanical géneration of such a basic s,

To show this let us Find ot the ontset o polynomial, say A,; of lowest rank from X =
i, This can clearly be done in 2 mechanical manner. 1§ clase (A)=0, ther 4, alone will
Formi alresdy 2 basic ser. Supposs therafore cluss (4i) >0, Check whether each polynomial
except Ay in X is elready reduced with respect o Ay If no such polyneimial exists in 3\, chen
A, by sl forms alegady o basic st of Zio Otherwise let Iy be the subset of 2y formied by
ol such polynomials exeept A, already reduced with rospect t0 A, From the choice of Ay all
polynomials in 3, will bave # rank higher then that of 4,. Now let A, be 2 polynomial
in Ty of lowes riok. X ¥; has not any polynomisl which is different fram Az and is already
reduced with respect to Ay then 4,y Ay will form 1 basic st of 2. Otherwise let 5y be
the subset of X, consisting of all polynomials except A, which have already been reduced with
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respact to A, Chosst Frem I 2 polynomisl Ay of lowest: rank and proceed s before, As the
clusses of the polynomials Ays Ass Ass -« 36 steadily increising and vnlikely to become >
N, we have io step in a finihe oumber of seps and get Gnully a base s in 2 smiechznieal
mapner, QL E. D

Lemma 3. L 3 be 2 ffnie set of nongero polynomials with @ butic sct

At Ayy Ags vy A,

of which class (A;) == 0. Let B by a ron-zero polynomial reduced with respect o all A's,
Then the set X' obtained from I by adjunciien of B will havz a basic ret of rank lower
thani that of o .

Proof. 1f class (B) =i, then B dlone will form a basic set of I* of rapk lower then
that of &7 Suppose thersfore class (B)r p"?? 0. As B is already reduced with respeet to
all A%s, thire should be some § 20 and s5r such that pZclass (Ain) and p < dass

(4.). Moreaver, in the case p = clast {4:)s the degree of x, 1o B will be less ﬂum that
of xp in A Flenes

d;, Ay vy Ay B

\u]l bé wn asmndmg set of £ with # rank lower than that of .. The basic sat GE 2 will
have therefore 4 fortiori 2 rank lower than that of o'y Q.E. D '

Remarl, The ahove femmas ais clearly also true For any infiuite st of polynomials and
the proofs remain esseqtiafly the ssme as long 45 the axiom of chofcs is applied. As the use
of sxiom of chejee will be in opposition to the mechanical thought, the mein theme of the
whole theary, we have deliberately restrict owrselyes 1o the case of finite sets of polynomials,

Consider now 4n asending ser

1Ay Ay vy A,
at before with dlus {4) = 0. Let duss {4;) w= p; and let the inidal of 4; bx I, Then
D« py o gy sov L gy
andd for each i wie have
 class (1) < pus
I; reduced with respett ta Ais *+ 0y Ajups

Let B be an atbitrary polynomial, Set B = R, With respect to the polynomisls in o’
sarting from 4y 10 A; we ean fom soccessively the remainders Ry -++ 3 By of By so that
we ger (s 22 0):

I::"Rr— s er‘fr + Reegs
Iret Rr—-'l = Q;.«';A;-q + Rr-—'z':

I{‘RL " Q[d] + R{u
Set R, =~ K. Then we get an expression of the form
Ipwe XrB = Qld, 4+ -+ 0,4, + R,

in which Q" are sl polynomials. The polynomial R ix determined from B and the ascending
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st oo« We shall call R the remainder of B with respect to o7, We call also the aboye
formuia the Remiginder Formula. :

It is clear that any teem of R will hive the degree in xp, {ess than the corresponding
degree in xp, of A, In other wards, R is reduced with respect to all polynomisls A; in .o,
We shall say briefly that R i reduced with respect fo o ond call the above procechire of
geting R from B and (o' the reducrion of B with tespect to .ot As the dewermination of
otie polynoaial with respect 1o the other is done mechanieally by the division algorithm, we
may state the resule in the form of the following

Lemma 4. Given o non-zero polynomial B and an arcending sef o of which the
first polynomial ir of class > 0, there is an dgorithm which permits 10 detormive the
remainder of B with respect iv o in @ [ivite number of seps, Denote the i-th polysonial
in of by Ay und its class by pp Then any term in the remainder R will have it depres
of xp in Ay lesy than the degree of sy in ) for each i,

Come now to the well-ordering of 4 polynomisl see a5 lollows, For chis purpose lex us re-
view briefly the notion zero of such a set.

Consider any polynomial F. Suppose that there is @ st of sumbers

LB 0 .4 3
By "'jﬂg}'II}"’"'gx‘N

tn K which will turn F inte D when thess numbers are substitited for the vaclbles w,, < -,
dexkysirraky in F, Then this st of nitimbers, which may ba coasidered as the coordinates
of a point in the finéar space K*™¥, is called 4 zero of the polynomial F or altsenatively 5
solution of the equation F == §, If the various o% % are not nunibers of Ky bur of some
extension field K of K, which «ill tum 7 jnto 0 when substituted inte it then, the s of
numbers, considered is 1 point of the linear spice B on &, will be cilled tn cssended
zero of F oor an éxtended solution of ¥ = 0. In order 10 moke the Involved field & expli-
city it will also be called ¢ Resers of F ar 4 R-solution of F == [, '

Glven a ser of polynomisls 25 #f o =t of numbsrs a5 given sbove §5 v zero (or exisnded
zero, or Rezera) of every polynomial in ¥, then it will be ealled simply a 2ero (resp. an
extended zero or 1 B=zera) of 5 or a seinsion (resp. a0 extended solution or o Eu:ofﬂrian)
of & =10,

Consider now a st & == X, of noo-zers polynomisls, supposed to be fipite It number,
By Lemma 25 5; will have some busie sty siy @ 0 @ is. o contradiccory set, then &,
consits of u single polynomial A belunging 1o Zy for which class (4} = 0. uppow o the
cantrary that @, is not contradictory so thet the first polynomial in @, fus @ts class = 0. For
pelynomialy B, which belong to 2, but not to @,, lt ws Form the remsinders Ryof B
with respect to Py supposed not all 0, Adjoin all such remainders Ry, whenever sari-zero,
to the st X to get an enlarged st of non-zero polynomials 35 From the formuls aboui re-
vmaipders each Ry, when non-zero, will be a linear sum of polynomials in @, es well as the
pubynomial B, with polynomicls as cocfficieats. Tt Follows that the st 3 will heve the same
st of zeros (or extended weros, or K-yeros for any extended ficld B a5 the atiginal ser 3,
Form now the basic st @, of Xy By Lemma 3 &, will have & ronk Jower than that of P..
IF @, iy not & conmiradictory ascending set then we can provesd 23 before, To this way we shall
get cither 2 contradictory ascending st after 4 finle hurnber of steps o & sequsnce of fimire
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sets of polynomials

Z';CE;CI"'CZE;C‘ )
where il B; have samc st of zeros (or extended zeres or K-zeros for any exiended ficld KD
with the corresponding non-contradictory basie sets @ haviag swadily decreasing ranks:

Pus Bus o755 s w0y '
Now by Lemma 1, soch a seguence can have only a finite nuinber of terms. In other words,
i the last one of such a sequence of finite sets of polynomials 3s 3y with @y s the corets
ponding basie set, then the remuinder of any polynomial of ¥y not in ¥, with respect to
will be equal to 0,
Tei @g be
':’-;‘:Fn Fzs ERE T LN

in which each F; is etther belonging originally 1o @,y or is the non-zers remaindee of some
polydomial in Ze.i with xespect 10 Pyoge By the remafader formula each F; is thus 1 finear
sum of polynomials in Py with pabynomisls as coefficients, Tt Fallows that any zero of 3.
atid thus any zero of X is also a zero of .

On the ather hand ler the initals of polynomisle in @y be Jiy fys »++¢5 1, From the
constructian we know that for any polynomisl G in Eye there should be non-negative fte
gors &y 2=  such (hat

o IFG = DF, + v < + O.F,,

it follows thet any zeéro of Pus if not 3 260 of ny one of the Witials 1,y «++, 7,, Is nece.
ssarity alep 2 zero of %, and thus o Gl of B By The same is clearly true For sxtended
zaros or K-geros for ﬁny extendded field K, :

Towt 7

Theorem (Ritt). Thers is an algorithm which permits fo ger, afrer mechanically «
finite rumber of sepr; cither a polyromial A of class 05 ive. on: in wariables wys -+ #, 50
that any wero of I ds alio # zera of As or & non-contradiciony ascending s

CiFys +v 5 Fyy

with iitials gy =++s Iy such that any sero of 2 is alvo o zero of Oy and any gero of @
swkich is nor zero of dny of the imtidls Lis will dso be @ zevo of T, The same & tire for
refended gevor and Repevos.

Wa shall call the mechanical procedure which permits o deferming @ from 5 & el
ardering of & and the sbave theorem will be called the Well-Ordering Theorem. The theoren

is due 16 Rite and forms the basis of or method. We shall ¢all the theorem Rin Pr:rfrp.ir; |
accordingly. The polynomial sst P ia the thearemy is called 1 characsorsistic wi of X,

§ 3, A Constaverive "Tnzony or Arcessarc Vamgyiss

Ay before, tet K be the basic fitld of charsceeristic 0 and
2,4yl s s Ly
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be a st of veriables arranged in & definite order with s *v+y #, noglected, A polynomial
will always be understood a5 one in K{x, +9 5y xy)s

A finhte set of non-zera polynomisls will sieiply be called & polysomial ser. The polyne-
mial st X obtsined Erom puking together the polyiomisls in two polynomial eeis 3 and 3,
will be denoted as Xy + F;. For polynomials Fy Gy e, ¥+ {F} witl also be denoted 25
S+ F, snd F 4 [FoG) as S+ F + G, ac.

We siy that & polynomisl set X defines an algebrase varicty or simply ¢ varieiy, to be
denoted ws {E]y with F ss its defiming sef. For two polynowndel ses ) and £y 3f any ex-
tended zere of 2y is wlso an exeended zero of 25, then we sy that the algebraic vanaty de-
bioed by Z; i 4 swbvariery of that defined by 55 w0 be dcnoud s

2y e G2, or 13 isd,

If, further, we have I 13| so that 3., 35 hawe the sume st of aytended zeros, then
we say that Xyy X; sre equivalent, denoted as

DA R B P A P AR
115 1CiEt but (5] 52 13, o [E51F] 5] then we say that the varlcty defined by
E, is 4 frae subvariety of that defined by Z;.
Gives a polynomisl Py iF sny extended zero of 5 35 slso one of F, i
[P} =0l or 1Z|c{F},
then we siy that F == 0 on I, detioted ws F = 0]X. Otherwise we denoie this as
Fsoy, |
Given & + | polynomisl seis ¥, -E;, #++, Zi(k> 1) hiving the following property:
Any extended zero of X is sho an extended wero of at least one of the sets 3, v+ : Sy
and conversely, any exteaded 2ere of shy 7 s also one of Zy then we say that By, <o, By
e a decomposition of Xy or the corresponding algebraic varieties PEF s v oy | 3] ure a decom-
position of |31, denoted a5

2= iniu-—--Ulanl  &=1,

IE for any ¢, [Z;| cannot be omitted in the 'above decompésirion, then the desomposition is
suid to be wnconrractible. In this case the varitty defined by euch X is 1 true subvariety of the
variety defined by X, but not a subvariety defined by the wiion of sther X5,

We say that the polynomial set & s reducible if it has some uncontrectible decomposition
and the variey defined by it is slss said to be reducible, Tn the contrary cisé we siy that 5
os welt 25 the varicty defind by it is irredueible. IF in u certain decompesition of £ esch 5y
is irredueible, than we say thar this decomposition is an drveducible decomposition of Xj the
same for the viriety defined by ¥. I this case sach 3 or the variety defined by it i called
an srreducidle component of X or the varisty defined by i,

We consider siow the problem of reducibility of o polynowiel set or fis defining alpebraic
variety. The followlng twa Jemiwias give some well-kaown criterin for theit drreducidilisy,

Lemma 1. A necessiny and sufficient condition for & polynomisd sex 3 to be frreducible
f thet there canaoi cxisi two sop=gero polynomiols G and H such thai
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GH=0lZ,
while
G =0iY, H5 0[5,

For the second éntexion let us first infroduce the imporiant netion of the so~called generie
point of a vmnt)f Conslder two exiension fmtda K and K of K and two paints £ = (¥,
s B, F 3 E y apd £ (r:, voig xpd, 2 6K, in the N-dimensional Hnexr spuces R
and K'M on K and K’ respectively, Suppose that thése hwo points possess the following  pro-
periy:

For dny polynomial Flr, o< wy)in Kz, -y 2yly ot £ iv an extended zerg of
F would imply that £ Is also an extended zeto of Fj in other words, Flxl, «+ v, 2) =0
a5 lﬂ&g 13 F(;E” rhay 55\1)%0 .

Tn this caee & will be called a specialization of E with respect to K, or simply 4 spe-
gitlization of £ if nvy fisundesstanding cen orent. :

Suppost the polynomisl set T bas o certain extended zero £ such thas z‘n:.‘r extended  zera
of 5 is o specialization of £ with respect 1o K, then we say that § i 2 generic poim of the
polynomial sst 2 or one of the algebrric varlety {5] defined by it. The following lemma
gives the second Irreducibility criterion of polynomial sets or algebraic yarietiess

Lemma 2. A ncccisary and sufficicnt condition Yor a polynomial set 5 or its paricty
o be irreducible {5 thai 3 has generic points.

The two lemnias above give soms oecessary and sufficient conditlons which sre however
mesely exisiential in cheracter and not constructive =t afl. Given a polynomdal ser 3 there is na
miedn$ to ascertain in 4 finite number of steps whether the conditions o the Jemrnas can be
satisfied or not. For the purpose of mechanical theorem proving, we have to devise some me-
chanieal procedure which permits to decide in « finite pumber of sieps whether 2 given poly-
nomial set s ireducible or not, and in the case it is mducible, 1o give in a finite pumber of
steps the various irreducible components of the decomposition. Such & mechanization may be
coasidered as constituting & constructipe thenry of algebratc geometry. It was given in details
in the two books of J. ¥. Rit?™¥ ind we shall give swme outlines in somewhat- revised form
of this theory bzlow.

Consider "an ascendineg set

Bidyy Az o555 Ay

in which the clase of 4 iz pr with

By P e Py,
We shall change the sotations in setting |

Xpy = Yya Yy Xy == Py
and denote the other #'s in the origing] order 55 @y v 1 ,my.  We all
de Ny

the dimension of the sscending s’ ¢, donoted as

d = dim @,
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Write now the polynomials A; in & in the following form:

Ap=e Cuylh  Coyfs = oo v o i s
Ay= Cayfr+ CpP P+ oon Camys

€y

‘g# il Gﬁaj;:" e {:ﬁywﬁﬁi S SR o (:hm«;

Ey

*

In the cxpressions €y ™ 0 are initials of Ay and cach Gy ¥ 4 polynomial in s *=+y wyy
Yo+ 0oy Yiog with coefficients in K. Puithermore eich A has already been reduced with res-
peet 10 Ay, vy Apy so that the degrees of $ip7 ¢ 5, Yoo dn Gy are Tess than an, <o v myy
respectively, The First problem to be considered is to give coditions for @ to be the basic st
of a certaln irreducible polynomial sex.

For thiy problem let s suppose that the aseending set @ possesses the following proper-
tyy

Let the wanscendertal extension field K{wy; »+ vy ) of K got by adjoining wyy <+ -, #s
be denoted by Kei then Aiy 28 1 polynomial in Kolyn] with coefticients in Ko, i irreducible
in Kils,]. ) A

Let the slgebraic exiension field of Ky gor by adlammg an  exiended zera o of 3 =0

be denoted by Ku(n,) = K\ then the polynomial 4; in K[y obtined by substituting =,
For g, in A, U irredueible i K y.1.

Let the algebraic exteasion field of K get by adjoining un extended zero ; of 4, =~ 0
be denoted by K,(n,) = K} thea the polyromial F; in Kify] ebtainad by substituting
for y, and m; for 9, in A, &5 feeducible 0 K[y, 1.

Suppose thit pmcmdmg in the sume mumser we get soecessively algehraic extensiois K=
Ki.a(n,), polynomials A; obtained by substituting Rua*t* ey bOr yee f5y Ve in oy, and
some extended zevos wy of A; wx B, where each A; i lerducible in Kioly] for 1= 1, 24

¢r+y », Under chese conditions we say that the ascending st @ s frreducible, By knows
methods there exist somie inechanicsl procedures which permit to decide in o finite number of
steps whether @ i irreducible or ot 7

Let @ be irreducible and satisfy the conditons above, Then w;y %5 are all :icm:nts i
R = Ky ond § = Cugsn o5 itas mus =¥+, 1,0 can be considered as & paint of the linmar’ spate
Kotm e Y We ghull call § 2 generic poiwi of @ and K 4 generating field of @, '

The following lemma is quite important for the theory,

Lemmea 3. 1f the wicending iet @ is irveducible with

7= (“3.;’ TREy Mg My g ’In)

a generic point o5 above, then jor a polyriomial F € Kluy, =<5 wyy ¥is ** %5 w] to Auve
the remainder R =0 with respeci to @5 if 15 necessary and sufficient thar # iy an exterded
zero of F, ‘

Proof. Denate the ascending set formed by the first k wrms in ¢ by

Pisdn Ay v dx A =Eksta),

Denote by Ky the (4 -+ k)~dimengional linear space over K with basis s =<5 tijy s * v+,
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ya. Similarly for the others, Then @y is clearly irreducible; snd
g == (st vy gy s * %5 ) s
when covsidered 28 2 point in K‘”",ls a2 generie point of ¢y while X, Is rhc genersting field
of d&u .
We shall prove by fnduction on & the foliowing twe zssertions;
Y4, Fgq is not an exiended zero of Cyg,
2o T Ry € Klugy v oyngy yis *roy ¥4l s sbieedy reduced with respece o @) and fig
is an extended zero of Ry, then Ry js identically 0.
As Chpuo € Kiwy *» 75 tas $4y 7705 941 18 known to be reduced iwith respect to @y and
& % 0, sa Fag 15 4 congetuence of 24,
Suppose 24, has already bemn proved. Consider any R satisfyiog the conditions in 2,
Write Ry as a polynomial in yys
Ry= 53+ S5k cos 8, .
in which 8;€ Kluys ~-vs w5 yy5 =<4 }';;_,;] with # -2 mrg.  Substitute y,5 <y 94 In §;
by my, *ty Naes with the 'n':suiti.n,g 515 § € Bige St
Ry =Sk + Sn + v + Be Kl ,
By hypothesis nx i an extended zerp of ﬁg =, As r <y oand gy I en extended zero 0f
the irreducible polynomisl Ay in Kyyy Ky should be ideateally 0 and 30 § =0, -y & =
0. As Ry is reduced with respect to @ so that each §; s reduced with zespect to Ppis
by induction hypothesis 24, we have necessarlly 8w 0 so that By » 0, 1. 8., 24 holds true,
It fotlows that 144 i alo true. The above proof is cdeady valid for 3, while 1, i quits:
evident, Consequently 1; and 24 are true for k=1, 2,-<-, n,
It is now easy to camplete the proof of Lemme 3 a5 follows.
Let the remsinder of F with respect to @y = @ be R; then we have the following re
mainder formula
CRF = Qudy + - + L4, + R, )
Suppase R == 0, Since 4 is an extended zero of 2l Ajs while by Iy it is oot an exiendsd
zero of any Ciyy 50 by the formuls shove ft should be sn extended zero of F, Conversely,
if i is an extended zero of F, thes by the same formuls # shopld abo be an extended zero of
Ro By 2n we hawe necesarily R = 0, This completes the proof.
Lommn 4. Lsz the acconding set
Didyy dyy ~o45 Ay
be itredecible with a genérie point
R T N ).
as before, If the polynomial F € Kluy, v+, tgy 315 <=5 y,] Has its remafnder % 0 goith
respect do Py then i Klay, <oy tigs yus 60y w3l there are polynomicls G snd Qpi= 1,
ve,n gHed that . . :
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G¥ — (QI.Al e oies oA Qu’f,) € KLuy iy ngl
cnd that

G(if) 52 0,
Proef, Omited,

Given an jrreducible set & a5 abive, et Q be the set of all polynomials n Ky -+,
Bids Yir * ' ¥al tor which the remaiader with respect o @ is 0, By Lemma 3, this set wilt
form clearly ¢ module. By the Hilbart basis theorem, there will br a finjte number of polyno-
mials in &, such that sny palynamia! of O s o lnear combination of these polyromisls with
polynomiisl coefficients. We may zdd the 45 of @ into thit finfte ©t and dencts the snlarged
finite et by Qg By Lemma 3 this polynomial set will have clearly @ s v basic set and
] as an exterided zoro, .

Let G be any polynomial with # 2s sn exteaded zeroy then by Lemmia 3 & has its re-
mainder = { with retpect 1w £, By the camstruction of Dy, G Is o lincar sein of pelyniunizls
in Dy 50 thir G = §/Qg, It fallows thai any exiended zero of @y 5 a specizhization of # or
that Qp is an irreducible polynomial st with § 25 2 gégeric point. We thus get the following

Theorem L Any irredueible cseending set @ is the basic set of some irreducible poly-
nomjal set Dy,

The above proof showing bow fo get an ireducible polynamial set @y Fom o given ir-
seducible ascending set @ is bused on the use of the finke busis theotem of Hilbert, As @ i
transfinite, and the exisience of o finite basly depends on the wxiom of  choice, onfy the exis-
tence of such an frreducible polynomisl set D¢ hes b wetustly proved, However, there. dues
exist sune mechanical procedure to produce in a finite mumber of seps such an  irreducible
polynomial st Qp consiting of s fnie number of polynomiale. T other words, :

Wi mdy
strengthen the shove theorem to the following Form:

Thecrem Y. There exists some meedanical procedure for any frreducible aseending set
P which wdl permit to deiermine in o finite number of sicps o fipite number of polynomials
inchuading those of © that form an irreducible palynomiul st R with sny generic point of ©
aF fiF greeriv pofil,

The proof of the constructive Theorem 17 is pot 2 simple one. A In applicativas the
mere existence of such wn frzeducthle polynomial sat @y will aligady be sufficient, as guuran-
teed by the Hilbert basis theorem, we shall satisfy ousselves in mierely statinig the theorsm while
putting aside the proof.

The next problem to be studied is the decomposition of 4 polynamial set or the correspon- .
ding «lgebraic variety into irreducible components.  For this purpose fet @, # and Qp be
before. we have shown that the irreduciblity of $.is & sufficient condidon for @ o be the
basic set of some eveducible polpnomial set Qp with the samé generic point f as @ which
can even be defermined in a mechanieal minner in 2 finite pumber of sieps. To this we haw
give the following supplement ' '

Lemwma 5, Let the Zaric st ® of o polywomial sef A be ifrreducible with the class of
coch polynomial. Ay in O befng = 0, Denvte the fnitial of A; by I;y T=s}y5 ooy u, If
any polynomiol i A hos its remerider O with respect to @y then A his o decomposition
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[,Q,e.l U{ﬂ“{" leU“‘U]A + I#I:

in which Qp or the tarre.rpaﬁdmg algebroic voriety |Qpl i irveducible.

Proof. For such a polynomial & in A or not with fts remainder ) with respect to @ we
would have, for some s; 20 and 0;€ Kluys * =5 6gs ¥os * 73 ¥a b5

I!’i‘ ¥ "1;"6 i Qlfj] + e Q_.«‘i‘y[o

By the ronstruction of Qp, & sheuld be g lintar sam of polynomisls jn Qg o that ;:’n‘y‘re'xj;
tended 2oro of Qs should be an extended zero of & and henée an &xtended zero- of A, Con
versely, any extended zere of A sy be considersd an extended zers of Ais, Hence by the
above formula it shauld be an extended zero of cither any such G or some I In other
words, It should be an extended ztre of Op or somé A 4 F;, Thus we have the decomposi-
tioni nt shown In the Yemma, ‘

Lewras 6. Ler A, @ br a5 in Lemmia S with A belng freducible. Then

A R‘-‘Q@ or ’Al = I.Qq'rls

Proof, Let the initinls of the polynemials in @ be [y 7= 1, =+ ym, Thea it is clear

by definition that
LA*%" !g{U"'Uid‘i “']‘I,r] — {d + I;"']nla
The decamposition given i Leminia 5 can thorcfore be written in the form
Al = (@l Ula+ 1ee0L L

As die generic point of @ s also a generle polat of Qp but conrict be any pxtended zeco of
Lrovles so (1@l E1A S 1+ 00], TF A has some cxtended zero which s not =n extended
zero of Oss R should be an extended zero of A 1=l 50 that we shall have |4 + 1,
v da] €10}, Tn this way [A] would havs an uncontracsible decoraposition contrary to the
irreducibility hypothesis of A, Hesice we should hove JA|] @], As conversely wo should
bave 18 i{Al,0 J4] =~ 180, Q.E.D.

Conisider now i aicending set @ ai brfors but with ® not mecessarlly irreducible. ~Then
there will be sune & such

Bogidgy Ayy vioy Age
i rreducible, with
Py =% (#n' YUy Was Y "’Jiwx-l)

as & generde point; and-that the polynomial Ay gor from Ay by substhwting ws v+ 05 B4y
for Yey® 'ty ¥ 1t reducible in Kiolyels where K@- = Ky(tys wo5, m—z} Let the fr
reducible, Factorization of 24 in Kg,[yi] be given by

A-{ - ige
in which m_c'h g € Kyolyad is irreducible, and £22 2,  Asin g the coefficienis of powess
of yi are all elemyents of Ky.s and con thus be expressed s the quotients of two polynomials
I #at G Rds Nert N4 muliplying by a common multiple of the descintors we wauld
get an expression of the form
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5‘31( o gs" v Fé&i
i which D 3 k{'ﬁ” AT .ﬁ;, Yis “t*s )‘ﬁ_wi'ii G,‘E K[H”- Py s ¥is r vty )’.1-]; while 5‘;:
G are got from Dy G; by substituting w,, <-<, #a—i for 315 %, ye and sre polynomials
in Keabyed, We may also consider D as alreacly redyced with respeef 1w @y, Similarly we
may consider &y s abready reduced with réspoet to @y,

Write the polynomial G« -Gy — DAy In o form recording to powers of ¥y, say,
Gyr+Ga = Dy = 3, Bisk,

in which By€ Kluyy *v=y g, %5 ** vy ¥p-ad. Denste by &5 the elemsny fn Ky = Kb
(my, <+ %y 7ig) got from By by substituting w5 e B8 ¥is * <%y Fhor. Then we have
b= 0 since DAy v Giner Gy, In other words, ench By will lave 7., 28 30 exiended zero,
It folows from the proof of Lemma § that each B; will have its remsinder 0 with respect 1o
the jrreducible wscending set @g.iy so that there ace non-negative Integers sy, ¢ v +5 dp4oy diwl
polynomials Qu € Kty “+, #as $15 %5 Yaur] verifying the relation (C; = 1))

. k=1
FEN TN I i P p
T DBy = 3 Oudi
[ACH]

Ser s; == max(sy )3 we then get
!

B TG+ Gh = DAY =~ 3 0id,

ixt
or

&
f%ic ¢ i_{;{:‘i"gks-‘ccé = Z f._);.(f;‘;

i
in which @y are polynomials in sy o pmgy F1y 5 s Pis

From the above it is ezsy 1o gei the following

Lemme 7. Les the polynomial set A hove @ ar basic sehy atd let the dast of ierin
A; b >0 and the initial of A; be Yyu v 1y ooy n, Suppose that © is sedueible, fo that
there is some k for which the wscending st Op. formed by the first k — 1 termns of @ is
ireedicible with ¥y € Kgj 02 0 generic point, iohile the polynonsial got frees Ay by subst-
ity fik-y for the corresponding variables it réducible with an irreducible foctorizution inte
pelyromials Gy -++, Gy, Then there iv o decompositian of thé ferm

[ = A+ FiU- UlA+ fslUTA + G
U"U]A“ﬁ"(;”.

Proof. Any extended zero of tither & A~+I; or a A+ G; on the right-hand side of the
above expresion is clearly also an extended z2ro of A, Conversely, any extended zeve of A s
also an extended zero of afl Afs, From the expression fust efore the lemma it iy also an
extended zeto of some I oor some Gy, Lok one of some Ay or A~ G This proves
the decomposition formula.

Lemma 8. Let A & o polynomial seo with © ai basic sef o5 in Lemma 5 or Lovimoa
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7. Then the basic set of eny polynomial tet A + I; or A+ Gy appedring i the right-hand
side of the decompositions of rhese lemmwor will bave it¢ ramk lower than that of @.

Prosf. ~As each I s alraady reduced with respect fo @ and cach Gy is assuened o be
reduced with respect to @ and hence slso reduced with respset to @, the presnt lerama
is an immediate consequignce of Lemma 3 of Section 2,

Lemraa 9, Ler ihe Paf}'ﬁom-ia[ ret A bé irreducible with an rreduciBle  aicerding ief
@ as its basic set. Suppose also ihnt ary polynomial in a polypomial set A or A har fos ve-
riginder O with respeet io B, Then

AU LA = 1A,
or the decomporition VAIUVAY ds contractible. _

Proof. By Lemma 6 we have [Qp] = [A]. By hypothesis sy polysomis! G'in A" has
its retainder & with respect o @, It follows thercfore that the genoric point of @, or the
geacric point of O, is an extended zeco of G, whence G' = /0y, Consequentdy A" = 9/,
or QA or [AVCiAT],  This proves the lermitia.

Frotn the above lemmas and also the preceding secion we got the fdlowing mechanical
procedure for getting the wncentractible irreducible decomposition of & polynomial set.

Lot the given polyromial zet be X. By the well-ordering theoreri given in the prece-
ding section, we can, in following some mechanical procedure, sucorssively enlarge the piven
set & 10 ger a sequence of polynomisl sets steadily incrousivg is shown belowy

Ao BB G Ey A,
These polynomial wts are actusfly motually equivalent, wiz.
E""E[szm e "\-’Eg'mfiy
Two cases may appeir. In the first cese 4 wmg our, In & certaln seep, to be o contradicrory
set consisting of a single term which is 2 non-zero elemient in K. In chis cuse £ itself is 1
contradictory set with no exiended zeros. Henve it is oaly necessacy to consider the second
case. Tn that case A has a basic set
fﬁ;ﬁ-;, J;: ey doy
with £y, 751, as initiels and dass of A, > 4. Moreover, 4 will possess the following pro-
pertiest Any polynomial in A will have its remainder 0 with respect to @, way extended zero
of Z is also oot of @, wod any extended zoro of @, if not one of any Initial [y is abo an
extended zero of X,

Now seconding (o the beginning part of this wetion, there is some mechanicsl precedure
o vérify whether @ is reducible, or whether A.'s are reducible in the successively extended
fields K;_,, We have twe subeases agsin,

In the first subease @ i irreducible, By Lamms 5 there is 2 decomposition

“'ﬂ = |ﬂw|UM+th'“UM"}“fﬁ!s
in which Dy is irreducible winle all A 4« J; have some basic sts of ranks lower than that of
A, We nuay then coisider gach A + /; as a new polyoomial set © and proceed agsin as in
the beginning. ‘
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In the second subcase @ is reducible. Then we have by Lemms 7 some decompasition
Al = [A+ LU YA+ Lo UlA+ GHU- UL+ Gl
in which cach A 4 I; or A -+ G; has some basic set of o rank lower than that of A, We
may then consider ¢ach A 4 1; or A = G; a5 o dew  polynomial set and proceed wpuin os
before.

Whatever the subease may be, we may take each Ak Iy or A+ G a5 2 new polyno-

mizl st & in suceession and proceed a5 before to get u sequence
3w B ws By s Ble == A,

In the case that A has 2 basde set consisting of 2 sngle teen which is 2 non-zers element
of the field K, we may remove (A’ or the originad [A 4+ G;f or [A 4 I from the de-
composition. In the contrary cise {471 will be decomposed further into several algebraic varie-
ties with basic sets of rank Jower than the preceding anies for the comesponding polynosial
set, plus possibly one with carresponding irecducible polynomial set Op having an frreducible
sscending set @7 ug ¢ basic set. In his way we will get a funther decomposiion of Al or
XL tself, In the decomiposition there will appear irréducible polynomial sets of the Form G,
Qgr as well as those of the form A"+ 1" or A+ G*.  For the latier onifs we may decoine
pose them further ds hefore, '

As in each step for further decomposition the polynomial stz A"+ I" or A"+ &' in-
volved have theie basic sots of ranks lower than the preceding ones, the decomposition should
stop i a finile number ol sieps owing ta the well~uedering heorein of Seetion 2. Conse-
quenty, in 2 finitc number of steps we shall arrive 3t & decompasition of the Following form:

(2] = 10 U0 [ U+ ULl
in which eich @, iy ant irreducible ascending sef, sud Do, is the reeducible polynomial ser get
fram @; a5 described in Theorem 1,

Accarding to the abave canstruction, each |Og| cinnot be a subvariety of sny |21,
j 2 i, but we cannot say that some D] connot be a subviniety of any | Q] J i,
This is becanse sve apply only Theorem 1 which wssorts the mere existence of Lo, From @,
IE we take ino accouat Theorsm 3 which ssserts a miechanical procedues for the conerers
ceiermination of Qo fram @, then we may use Lemma 9 to prove iF any 1D} & 3 sub-
vaciery of 4 preceding 1Q¢ |, 7 <7, or not. It follows thay, on the basis of Theorim 17, we
can get 1 noncontrictible frreducible decornposition of [ Z] i 1 mechanical manner,

In a word; we get ﬁﬁal_ly the fallowing

Theorem 2. There is a mechanical procedure which perniits o determine for o poly-
nomial set X, n o finite wumber of steps, & nowcontractible lfreducible decompodiion of the
Jorm

2] = @a | U~ U1,
i which cach i an drreducible cieending ser of Qype

For the application to wmechanical theotem proving, it Is bowever uctually not necessary
1o cary out the decomposition up to the end to arrive &l 4 noncomtractible one. I Fact, it
is usually sufficlent to have an {rreducible decomposition which may be a contmactible one.
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Hence Tor the spplirations the existential Theorers 1, bub not pecessarily the constnsetive The-
oreme 17, will be quite sufficient to méct the purposs.

§4. Pacor o man Avcemrirc Mecaangaror Thgonew

We give below the proof of the Mechanization Theerem in the algebraic form a5 deseri
bed in Section {. For this we firt maké some preparacions.

Given & sct of varizbles 2, ++»5 ¥x arranged in 4 definite orders

3‘4”"{#3'_{.‘ » *-{x:f}'
and given # basic fleld K of chanacteristiz O and an ascending st of polynemials in Klx,,
“rrpxnls
Pidyy Ay vevy ‘ff,ﬁ'"
for which the classes satisfy the relations
R RN A Y
we reiveite each 2o, a3 ¥ and the other %'s a5 Wiy cr vy 8y with F == § — 5, Then 4.5 cen
be put in the form
Ay CiyTi+ CoyTi 4 24+ Cips
in which
CoutKlas v stas yis * 47y ¥roals £ Lyreeiny j=10, Tociey my,
The initials F; of A: are then jusi the polyaomials F;o= Cp € Kluy;s v 5wy, yas v ey gL
We call esch inequation
1+ 0

2 non-degeneracy condition,

Let o polynonisl G € X [uyp ¢ <5 #as 315 < +5 ¥l be given, Constract the remainder R
of G with respect ¥ @, Then by the remalnder formula we have

.1{“ * ’l:;tG - g;dl & aI I o Q’Aa - Rg

for certaln non-negative integsrs & == 0, with cach 0; € Kag, <45 gy Y5 5% %5 ¥al.

We shall investigaie the necessary and sufficient conditions sueh 1hu

G *= 0

oy be deduced x5 a consequence of the equations A; = 0x £ =1, *+ry 0, We hall prove
that, nnder the subsiciaty non-degeneracy conditions ;% § and under the hypathesis that @
is irreducible, the necessary and sufficient condition I3 just B = 0, Wheder the set & is irre-
ducible or not, the sufficiency of the condition is quite evident from the sbove remainder fore
mila.. $o we have the following

Theorem 1. Ler &, Ay Lix G be ar above apd R=0; thon under the ror~degeneracy
corditions

Lras (=1, vve,my :

G w0 iy a eonsequonce of Apo Oy iv b, vouyny whether @ is reducible or nor,



226 WO WENIUN (R WEN-TsUN Vals 4

i @ is irreducible, under the non-degeneracy conditions for G =+ 0 to be « eonsequence
of Ap=0, =1, +++, nythe condition R =0 is n only necesary bur sho sufficient, ws
in the following theorem which fallows directly from Lemma 3 in Setion 3,

Theorem 2. Lot ®yd;y liy @ be as above and © be irreducible. It usder the now-
degencracy conditions ;%5 0 the equation G s~ 1) is d consequence of the eqtiations Ap== 0,
i1, ooy n (Jor o coriain extencion field of K), then fhe remainder R of G twith respect
to @ i3 0, |

Remark, The proofs of these theorems depend very souch on the theory develaped in
Secrion 3 and art rather involved, 1f we restrict ourselves to gl feld a5 1s the cnse of rdic
nary Euclidean geometry and piy no attenton ta the constructive aspects, then the proofs will
be much simpler,

We now give the proof of the Mechanization Theorens of mnordered peomeiries in jts sl-
pebraic forn.

Given a geameirical starement (S) in a certuin unordered geometey, our object 15 o give
4 mechanical method to decide whether (8) s true or not. For this purpose we choose first
a” coardinate system, express the points invalved by coordinaies, deote these coardinares by x4
and arrengé them in o certain definits arder:

¥ ai e ~dxy,

Next we wanslate the varlous geometrical relations in the. sistement (§) into algebraic relations
of these coordiautss, Then the hypothesis in the satement (&) will be tanslated into o sysiem
of équntions

Fpws @y rvny Fi=0, _
in which F; are polynominls in K[x;s +r<; xpl; with & the basic feld of characteriaic
0 associnted to the geonwerry in question. Actially all these polynamials aré with rationst or
cven integer coefficients, The conclusions of the staterneat (§) will then be turned into an-
other system of equntions

Gia"'[], vy Gf*""“},
with all G; being polynomisls in Klxy, ++ <, vy}, olso with rationsl or jntegér cosfficients.
Without loss of generality we moy suppose that thert i only one sitch polynomial Gy denoted
simply by G heaceforwnrd, The palynomials Fy are then ealed dypotherds polynomials of the
statement {8), siid the Of's or G the conclusion polynomid(s) of (5.

The proof of the Mechanjzation Theorem consists in exbibiting a mechanieal procedure
which permits to deterine fiest i« finite number of steps a set of polynomials Dy, v+, Dy
for non-degenerdcy conditions, with ot Dy in Klzyy v, xyl, which will actoslly be ali
with rational or even integer coeificients, Secondly the same miechunical procedure will also
permit te decide in u finlte sumber of sieps whether under the non-degeneracy conditions

E;#G, ;;‘g I}(#D,
the equation G = witl be d consequeice of Fjwm O «voy F,o= 0.

With the language of algebraic geometry, the proof of Mechanization Thearem cen also
be restated in an alternative form in the following manner:
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Denote the st of hypechesis polynomisls Fy by X = {F:}. The st & defines an
algebriie variety ||, with dimension 4, viz., the dimenslon of any charscteristic set of 2.
The proof of the Mechanization Theorém consists then in exhibling a mechanical procedurs
which permits to detérming a set of polynomisls Dy, <, Dy such that i «djoining cach
Di o B; the resulting polynomisl set ¥ -+ Dy will define an slgebraic vadey |Z 4 Dy| of
dimension <2 ¢, Furthermore, the sime procedure will permit to decide,  undey the non-
degeneracy conditions [, w 0,0+ +y D, 9= 0, whether G » {} or oty in ather words, whether
G will be 0 or not on the remaining part of the slpebraic variety || safler removal of the
true subvacieties |8 - Dyl .

As beiefly iudicated s Section 3, we caiv decomposs the algebraic variery into {rreducible
cutnpatienis, ench of which hus an frreducible busic st @; which deiermings fn turs that irve-
ducible componént in question, denioted by 1@ |. Fuhermore, in the case the dimension
d; of [Qp;| Is less thun the dimension d of |3, thes this wue :ubvuiz’zy is gut froma
<ertain prevmus l.(?‘,,ﬁ b} acf;mmng o & some polynomial D which is efher an initial Iy
or some Gy fn the previous notations and (8| i o subsaniety of [@; + Dy, We uke cach
such D; as 1 non-degeneracy polynomial. Suppose sfter removal of all these true sbvirieties,
the remaining irreducible compotients of dittension o are

[, 05 <v vy [Lod.
Derote the initlals of each @; by Ij5++ 5 I and vonsider them also as non-degenersey poly-
nomials Dy, Now swhether G =% (0 is 2 consequence of Fys= 8; <oy F, =1 under the
non-degeneracy conditions [, 3= 0, Dy % Uy is just the same 45 whether G =~ 0 on the re-
meining paris of 18 [, s 10y,| after removel of the components {5+ ;| sid those
defined by Dye= 0, By Theorems |, 2 sbove this csn be decided by whethir the remainders

of 6 with respect to @; are all 0, it fuinishes the mechanical prmﬂu:c required and thus
gives the proof of the Mechintzation Thesremi in question.

The above mechanical procedure of theorme~proving it theorstically quite simple in appe-
arance, However it would be quite difficult (o apply this method to the proof of concrete the-
orems. The resson s that the irreducible decomposition of  wlgebraic varisties depends on fac-
torization of polynospials which, theugh theorctically almost selfwevident, fs a sather difficult
problem i practice for which no method of high efficency i available cven up to now,
Consequently, the sbove methed is entirely non-feasible in practice, Fortupately, for the theorem--
peoving in geometries, we usuaily hope that the theorem in guestion & seally a tme theorem
and we hops 1o prove it twrue in sa affirmative manner. For this purpose it is epough fo
prove, by Theorem 1, that the romainder of the concluson polynumisl G is 0 with rspect to
some uscending set,whether frreducible or ol Therefore, w0 esch concrite dworem  whose
truth s to be tested and to be pinved in the case it i really tras, we may apply Theorem 1
direcly, Tt by computation we koow that & kas its remainder § with respect to the ‘ascending
set, thén the theorem in questicn if frie snid the compistation Furnishes actually w proof of thiy
theorem, T this case éverything is done. Only in the ¢ase that the remainder i3 not 0 should
we ask Further whether the eorresponding ascending set is irreducible or not. For this reason
we shall modify the sbove mechanival procedure of proof 1o ‘the followitg form which has
been proved 1o be very efficient in practice (somz examples will by piven in the hext section).

The modified mechanioal procedure mns somewhat ak Foflows,
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e Bt et T,

Consider 2 set 32 of polynomial sets and 0 st A of polynomials, where A is called the
degeneracy set In the cutset, @ will consiss of 1 single polynomial set, viz, the st of fypo-
thests palynomials

Foe By ey F.ly
and the degeneracy set will be an einpty one, viz
A g,
During the procedure we shall increasé or decrease the number of polynomial sets fo &2 and
also adjoin non-degeneracy polynomials into A to get the final
'&ﬁ{DIT viey D(}
as required,

Step 1o Let 37 b nan-eiapry. Then tuke arbitrarily & polyromial set T from 92, and
remove it from B 1o gor a new B2, Using the well-ordering theorem in Section 2 to ene
large 3 to succcsive pelynomial seis as shown below:

X BCRC G, =4,
It A has an element which is s nonezero number in K, then A is ¢ contradictory  set, In
this case the hypotheds in the statemient (S) is contradictory in {self und the procedure will be
stapped. Yn the contrary cuse let the basic set of A be
@Ay dys vy A,
The initials of A; will be dencted by I;, By consraction, any polynomisl tn- A except A
will have its remainder D with respect to @, In that case we hive alto
dim{X] = dim@ = N — n == 4,

It Step | is just the first step from the very beginning of the whole procedure, ther the
dimension d will be recorded for Futuce reference,

If Swp 1 is the succossive siep from the dther ones during the procedure, then we come
pare the new dlimenidon 4 with the previous ¢ recorded in the beginning.

It this new 4= the previously recorded d5 then we sdioin the inftlds £; © A o get
some enlarged new degeneracy set A and proceed io Swep 2,

It thic new d < the previously recorded 4, and the prescnt X' is obtained as some A -
Iy ot A+ G diring Sicp 3 below, then we adjoin this J; or & 10 A to B A new A, We
then retoryy to Step 1 and proceed as before,

Siep 2. Find the rerosinder R of G with respect 1o @,

Suppose R w= 0, I jn &7 there is not any mare polynomial ser, then the swterment (5)
s true under the non-degencracy conditions

Dy 0 (Dyea),
and the procedure will be stupped. Tn this case the theorem is teue and is proved wider the
non-degeneracy conditions. Otherwise we yeiurn 1o Step 1 and proceed again a5 before.

Suppese R % 0, Thex we proceed to Srep 3.
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Step 3. Chesk the irreducibility of the basle st ¢,
Suppase that P s irseducible. Then a8 G has its remalnder 3% ¢ with respect to 9, by
Theorer 2 under the non-degeneracy conditions ‘
Hyee 0 (Dye &)
statement (§) s not truey the procedure will then be stopped. Tn this case the theorem 5 not
wue vader the sbove non.degeneracy conditions.
Suppose that @ & reducible. Thea there will be some decompusition
PAL = [A = K1V WA L UTA + Gl U~ U4 + Gyl
Consider such A ~ I; and 4 4+ G; a5 new polynomial sets ¥, and adjeia ol thew 1o &2 1w
get 8 new enlarged st P, Then return 10 Step I oand proceed again as before,
Ageording to the previous sctions, the sbove procedute should stop in ¢ finite numbsr of
steps. In this way we get z finsl degoneracy sut
A= {Dy}
and one of the follgiving thiee conelusions should be trues
1) Under the non-degencracy conditions
Dy {(Dye A)
the hypotheses in the statement {S) are contradictory In themselves,
2) Under the sbove non-degencracy conditions, or uader the additional hypothesis Dy 2«
05 the statement (8) is true, or, what i the same, the theorem in question is true.
3) Under the above ron-degencracy <onditions, or under the additional hypothesis Dy &
0, che stozement (§) Is mot true, or, what is the same, the theorsm is not tfrue.
Generally speaking, the depeneracy conditions
D=
are riot worth aniy more consideration.  If there is some necessity to consider such 4 degener-
acy condition Dg = 0, we may simply nke it 45 & new hypothesis o b adjunct to the st
tement (S), f.e,, we congider {F_“ "y Fn Dk_} instmad of {Fu Ry F,} end 1h§!1 pro-
ceed as above,

The above mechanical procedure is very feasible. We have impiemcnt‘:d it on small com-
putess, proving and thus also discovering quite non-tivisl theorerns in this way, The next
section will describe 2 few iHustrative exacuples. :

§5. ProcrAnMMING iNn Egaurins,

It 3 clear how o program according to the procedure deseribed i the preceding sectians.
In fict, programming has been dotis and varous theorems have been proved on racher small
computers. Before we explain cerfain theotems proved in this way, et us firt add some n-
miarks,

Firsl, we nizy lessen the baboor of computation by modifying slighdy the definition of the
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busic set and characteristic sctc Thus, we shall define an uscending set
J)’fidnd::“"it{i ‘

to be onc in fvose sense or in weak sewse in requiring woaly that ewch A in the set be
reduced metely wih respect to the varisbles oeeuring in the lesdivg werm of d; 2lope. The
notions of basic set, et¢. derived in this way ai¢ theri also ssid to be in leore senise or weak
sense; ‘This will mot affect the fimal conclusions but will gready simplify the programming ind
the computation This, the polynomial st carrespording to the hypathesis of a theorern o the
ordinary peometry is wsually zleeady in che form of an ascending set and hence alse a basic
sct in the above loose or weak sense. In the worse case & few strokes of simple hand eompu-
wtions may be required. The procedure of well-orderitig is not necessary in general  becausd it
it quite [aboursome.

Secondly, we arc only inieresied in arriving at srwe theorems so that only the sufficlency
part of qur criterion will be considersd in the programming. Thus, if the remainder of the
conclusion polynomial with respect to the hypothesis polynomial set, supposed already u basic
sct in lowse semse, is zero, then the thearsmi iz frue pestrically under the tiahi-degeneracy con-
ditions furnished by the initials of the hypothess pulynaimials and we have achieved our 2im,
Only in the case of non-zero remainders is the truth of theorem doubiful, and further invess-
gations about the reducibility of the pelynemizls miay then be required.

Firally, we semurk that though the bypotheses as well s the conclusion polynomials usual-
ly bave cnly s few terms, the polynomials got successively during the reduction in the deter-
minstion of the remainder may rist up quickly to hundeeds and thousands of térms. © To avoid
the appearanice of this phenomenen the following bramching device tws been adopted in our pro-
gramming. Thus, let some polynomisl g of the form (mp w dogres iy, of A; of cluss
in )

T ST LA o & O ST o S

in which each g; is of class < p, appesar duriog the siccessive reduction of the conclusion
polynomist. Then, instesd of verifying further whether the remainder of g with respect to o
i zere, we may verify this for tch g, in furm Furthermore, we shall we on fnder e
[TED] to indieate the complexity of a palynemial, where T is the number of terms, € the
class, and D) the degree in the leading variable yi of the polyromisl, The successive reduction
of the conclusion polynomial up to the final remainder which constimtes in fact o proof of the
theorem inn the eose of zero remalnder may then be clearly shown by w flowing chare of the
index ses. As o simple cxample, with suitable coordinates the well-known Pappus Thearem will
have 6 hypothesis polynoarisls alrendy in the form of a basic set in the lwose sensc whose
index sets mre .

[+ 7 11,03 ¢ 1L 14 9 1L, 13 10 11, [4 11 13, [4 42 1),

The conclusion polysomisl has un index set [6 12 1] and the flowing chart of the reductions,
as done on n computer, runs as followy:
[6 12 1) —=[8 11 i) =—r{12 0 1} —>[l6 9 1] —>
[18 8 1}—=(16 7 ]y,
The final zero means thut the theorem is true (of course generieally only) and is proved with
the ubove running chart as & proof. Remark thet different choices of coordinates will give rise
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to diffcient rwnning charts which correspond to different proofs.

We bave spplicd our program to the proof of various fameus theorerss in the ordinary
goomietry: theorems of Keukou, Pappus, Pascaly Simson, Feuerbach, Morley, ete. Perhaps the
proof of the theorem of Morley is the most difficult and Is guite instructive jn itself. So Jut
us state the theorem in foll below,

Theorem of Morléy. For a miongle 4, 4,4, the nelghbouring trisectors of the three
arigles of the triungle will intersect 1o form 27 iriongles in all, of whick 18 are cquilaieral,

In mppearance this theorem i out of the reach of our method which werks only for unor
dered geometries without notion of order or only for fhcorems not invelving order relations
in an ordered geometry. Thus, in in wnordered peometry, thers is no sotfon of rays and ap
angle cannot be defined in the usml sway #5 two rays emansting from a common puint,
However, we cin define an sngle {4, L) simply ag ani ordeced pair of lines &5 Ly and
atrribute o magnitsde T(J,5 &) to it cortesponding to the tangent funchion of the gngle in
the cass of ordinary geometry,

We may now define a bisector of the abgle £(ls %) in the unordered geomictry as
line sach that the refleciion (well-defined in the geometry) of Z with respect to ¢ I just 2y
I Ziy 1o intersect, thed 7 ¢ & Hue through the interseeting point such thar 7'(rs 1) =
T(ly ) corresponding to the ordinery formula £ 4) = 20 ) or 22080 1=
2z, Imod 7, However, in the unordered peometey there moay exist two eich bissciors for
an angle und there s no means to distinguish these two biscctors. _

Similur ambiguity sccurs for telsoctors of an angle. To Fix the idess, let us cill u lins £
i primary wrisector of an avgle 20, 1) if w fommula in T holds which corsesponds 1o the
ordinary formuls 320 4) = Z{Ls 1) mod#, There are 3 such primary trisectors which
there i no menns to distinguish from euch other, To each such primary triseetor 7 howeyer 3
uniguely associnted a spcondary frisector & such that T'(ls £) w T8 1),

Consider now o trinngle dydydy, Lot £ be any one of the pritoary trisectors of the angle
Z( A dys A, Ay) at vertex A with dssociated secondary trisector £, Similarly lei £ 13 be &
primary snd un wssocisted sccondary \risescwor of the ungle £(Ad5y A4, and 15 24 be those
of the angle (A4, Auds), Lct. fs £; intérsect st a point Ay, I notation A= Ay
Similasly let Ao == A0, A= uAn, The riangles Aydydg sre cleaddy 27 in alle The
Morley thtorem asserts that 18 mmong them are equilateral,

First of all we have to settle the problem how the I8 triungles should bé chosen For
this let us denote by & an angle for which the T-valie has square =3, In ordinary geo-
metry this means 8 = i% mod 2w, Remark in passing thet i6 an onordered geometry it is
not legitimate to speak abott + v/ 3 or —4/ 3. Now we choose the primary - trisectors
Ly fs fy such that somie relation in the T-valyues corresponding to the ardinary formula

aé(f;i c‘fy‘:f;) = 4(?;, {i;.-:‘f;:-) B2 J’:(Igj .e'fyfi) = mod Zx
holds true. Under this condition the numbar of wisngles £,dsd, is then reduced to 18 which
will be proved to be all equilatersl,

Adopting now ® certain coordingte system with codrdinates of varous poims and the T-
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values of various angles involved in the theorem as #%  wrranged in o ceraio definite order,
we shull get o set of hypothesis polynomials £y, 18 in number, and & certain  conclusion
polynomial g, Without entering the deteils we micrely 1t the index sews of variows gpolyns-
mials belows: ‘

Fai hypothesis-polynominls:

23 1,03 ¢ 1,04 5 11,03 7 10,13 8 1,04 ¢ 11,03 10 1),
{2 10 11,02 12 21,(8 13 1),0[4 14 1), {4 15 1},1{4 16 11,
(2 17 1), [5 18 11, {3 12 11, {4 20 1), {4 21 1},

For conclusion-polyniomiats {4 21 1],

To verify the thearem by menne of our program we remntk that separation will ocour
whes we come to the point after the feductions with respect to Iy and H,, The following
is u rough scheme about the successive reductions with jndex set of successive polynomials indi-
cated.

C.[4 21 1] R4 (1208 12 1] ~—[592 11 2] ~—[376 & 15] —[19 5 3] —s D
- |
]-» Clére 11 2] —[375 6 15] —» {20 5 3] —> 0

L 1357 6 14720265 30
e, 355 6 14]—>{23 5 1] — 0
i

'_;cs.-'c t‘“‘*{g“ii

.

t
L Caul54 6 3T—>[29 5 3]~ 0 Lo 0,[53 6 3]—>[28 5 3]0
. z
i ,
-+ Cyl25 6 2]~ 0 Lcﬂ[gg § 2] v

Remark that each srrow in the above schems consists of & noimber of successive pedues
tons. For example, the srrow mercked (1) is detsiled a3 follows.
Cold 21 11 ~——>{8 20 1] = [4 19 1] —> [18 18 1] =~ [36 17 1]

~eer (36 16 1] —r [68 15 )] —> {132 14 1]—>{235 13 2] —[832 13 1]

—— (1960 12 3] — [1208 12 1),
Thus u certuin polynomisl of 1960 terms wccurs in the whole procedure of reductions. E we
do not adopt separntion devices ot conveminit places in sclecting switable coordinute systems snd
voordipaies of poings, the polynomials during the procedure may quickly grow toe farge to
be admitted everi by o big computer. For the present cuse a9 ofl remainders (28 fa al]) are
z¢ro, the Motley theorem js trus and the sbove scheme furnishes such a pioef of the theorem.

We ndd finally that the above scheme shows that we have indeed proved a theorem a litde
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more general thun the originil ope. ¥or the same proof holds wlso in the cuse of certain unor-
dered geomtetsies tike complex geometries, for example, In such geometeies isotropie linés oy
exist, However, if we restrict our theorem so that nb isofropic lnes are fnvolved in the stote.
ment, then the mechanicel proof applies still,

As o further exanple let v consider the problem of determining all tdangles 4BC with
two equal bisectors 7, and fp of angles 4 sad B. Tt i well-known, but i gquits non~irivial
to prove, that the triangle 4 BC should be isoceles (A€ = BC) if the two equal bisectors in
question are both inrerrel anes. Mro S, G, Chou has raised the question of proving this fack
by the mechutical theorem-provisg method. Now it is easy to see that AL = BC would nat
be true (gesericelly)} if onc of the bissctors 245 5 {3 an ineermal and the other is an cxiernal
one, Chou and T have fried on the computer and found the rather anexpecied result that A€
= BC is still not irue i€ the equal bisecrors are both external oncs,

In principls the above problemi is sgain out of reach of our method. However, in view
of the naiure of the problem thet the order relutions only enter the hypothesit but not the con-
chusion st oll, our method in combination with thet of Scidesberg in reduciog inequalities to
equalities by introducing now auxidiary vitinbles will lead 1o some information sbout tha fingl
results 1o be found. Thus, let us deiecxe by 4E and BD the tiwo equnl bisectors in gquestion
and by I theit point of imersection. Tuke coordinates with

A= {"’"“13 ﬁ); B “”(“i‘“i G)a I"":(x‘;g #‘;): O = (it,g, fli)! ete.

Dencte also the slopes of AEy BD by xyy x4 zie. Introduce o fusther woxilary vatiable
#, by seing

xpry = mxly )
ot
ATy == "';",1'.’3, (2)

Equation (1) means that A5, BD sre either both interns! or boch external bissctors which
will be distinguished by either

.3‘33“3 ;:’ O!
of

nEg <0,
. On the other hand .cquation (2) ieqns that ong of 4Fy BD 11 an intérnal whiIt the other
is an extérnal bisector,

Consider o.g. the case of equation (E) From the hypothesis including thc eipualicy of
bissttoes we get oni running the program a set of equations, with extrsneous Factors cbrrtsj:hnn-
dmg to degenerats cises aliesdy removed, as follows:

waf () =04 - (3)
with
oy = (1 — & (s — 1)xd — 2) — 4, (4)
¥i= "’J(} — zi}s (3)
(1~ &Dayry = 22}y (6
e,

Equation (5) shows that in the non-degenerats case we have
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SEN o
Equation (6} showt that we have '
Coxtelloar 1
according oy the two biscctors A€ BI are both {mtermal ones or buth external ones,

Suppose fist ] <C 1, Then from (4) we sce thut f{2) < 0, From (3) it Follows

that we have necessaiily

xpe= 0,
This just proves the clussical theorein that s triangle with two squel infernal bisectors iy jsose
celes.

Suppose next #12 1 sa that the two bisectars sre both cxtersal ones. "Then f(&) w0
will have positive roots of x} for «f <01 so that there e an infinity of non-isoreeles trisngles
ABC with equal exvernal bisestors AE, BD for which the corrssponding point I (x5 2y)
will lie on & certwin ovel defined by the following equation topether with (7):

w5 (3 = ) R 51— A = 201 D) = A~ ) -,

The case of equationn (2} or the cuse of one interial snd one external bisector csn be
treated o entirely the same manner, We find thus infinities of non~sosceles trizngles with eual
bisectars one interval and one externnl for which the corresponding points 7 will e o two -
ovals defined by the some squation bove with the resteiction 23 > 1, The problem raised
above is thus completely setrled. ' '

We have slso applied é_u‘r‘ method to the mechunicol theorem discovering of “new” the
oiems in ordinary geometry. Several theotems have best discavered in this way. We shall illus-
tanie below.

Ex. Paseal-Conic Theorem

Suppase we wre given § points Ay, »*+y A; on the ssme conic. Let us eall uny point of
imtersection of i (Y pdr (Bor iy £y ky I mutondly unequal) & Pascal point. Such Paves) points
dre 45 in wll which He three by three on 60 so-called Pascal lnes. These poinis and lines consti-
tute a configuration which has been much studied by numerous geometers including  Steiner,
Stauidt, Cayley, Kitkmaun, However, mest of the interesting theorems fousd by them e of a
linear chaructert collinearity of certafn points and concurréncy of certsin lines. Now we put
the following problenis What theorems of 4 guudratic character can be found about this confi-
guration? In partictlar, we ask what combinations of § among the 45 Paseal points will lic
on the same conic (co-conic for short), OF counie we are only intersted in such combinations
of 6 Pascal points lying on some conic not degererated into two Pascal lines.

The problesn witl be sindied with fusther specialization. Consider for example & prroutas _
tion ¢ = (123456) which will net on the 45 Pasenl points. We now ask for what Pasoil
points £ the six paints P 1Py 'Pyiesy #F will lfe on soine non-degenerate sonic, By irials
we ste that the only possible points are A AN dody or the eyuivalent gnes. Assuming chat
the usual Pascol theorem is known, then thiv smownts to whother the hexagons forme;i of the
six points v'Pyi == By 1o+ +=35, wre Pascalian or not, j.e., whether the theee points of  inker-
saetian of the apposite sides of the hexagoos aré collinear o not. Formidating the theoram to be
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proved in this way ve verified sgain on the computer that this is really the case. So we ge
a number of non-degensrate conics on each of which lic 6 Puscal poing. We call thee conies
the Pujcal confer and the theorem thus discovered the Paseol-Comic Theorem. Tt was first -dis-
eovered in 1980 and verified oo an HP9835A.

Of conrse it iz very likely diat the theorem s known alrendy in n the last century. 3 ‘vforeawr,
simple anid degant proof may alio be sssily found far this theerem. However, thess ate sici-
ther of any intorest mor of sny importance to us from the peint of view of mechanical theoters
proving. The evample shown may well indicate the powerfuluess in discovering really non-
trivial new theoreas in vatious kinds of geometries hesides the ordinasy gwometry, eg. the
oon-Eviclidern. geometries, the cirdde geometries, or peometcies of even more modern nsture, in
which "known intereting theorems are rare. Even in the case of Pascal configurations we may
pat forward some problems to which our method may give some answers Are there other conicy
through at least 6 of the Pascal points of touching at least 6 Puscal lines beaides those found
above? Ase there any interesting geometrical relatfons brtween thess comfes sud the various
Paseal points, Poscal lines and other known peints and Hnes of sgnificance % Are there also
cubic relations between the 45 Paseal points, i.e., ere there noi-degenerate  cobies passing
through ut lesst 9 out of the 45 Fascal points, e, Of course Innumerable problems cun be
sei forth in this way.
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