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Abstract. In this paper, we discuss Wu's well
ordering principle and theorem proving over finite
fields, try to prove some theorems in the geornetry
over finite fields.

1 Introduction

Automated reasoning and/or theorem-proving by
machine(abbr. TPM) is an attractive research
field. Even before the computer appeared, many
research works in this field had been done. For the
history of develapment of TPM, see [1].

It is very interesting that almost all the peo-
ple doing TPM, try to prove some geometry the-

-orems by their method. However, before 1970s,

there were not any astonishing results for geome-
try theorem proving by machine, although Tarski,
in 1949 presented a decidable method for elemen-
tary geometry., In 1978, Prof. Wu Wentsiin, in
his weli known paper [9,10], gave a new (algebraic)
method and lay a foundation for geometry theorem
proving by machine. The more than 500 theorems
proved by Wu's method in [2], many of them are
even difficult for man to prove, show that Wu’'s
method is very powerful in elementary geometry
theorem proving. In recent years, Wu’s method has
been well developed, now it can be used not only
in the elementary geometry theorem proving but
also in the differiential geometry theorem proving

3,5,8,11] and automated derivation between some

physical laws [12]. However, we have not find the
works on TPM in finite geometry so far.

Parmission to copy without fee all or part of this materie! Is
granted provided that the copies are nat meds or distributed for

diract commercial advantage, the ACM aopyright notice and the

titie of the publioation and its date appear, and notios is given
that copying ia by permission of the Associatlon for Computing
Machinery. To copy otharwise, or to lepuhlhh. requires s fes

and/or spacific permissicn,

ACM-ISSAC ‘93-7/93/Kiev, Ukraine

© 1983 ACM 0-89721-804-2/83/0007/0292...41.50

|

Pinite geometry is one that contains a finite
number of points, It has many applications in
coding theory, cryptogrphy,block design and so on,
Undoubtedly, automated derivation of some geom-
etry relations and the theorem proving by machine
in finite geometry will be helpful to its develop-
ment, _

Unlike in the ordinary geometry, the discussioy,
of geometric statements in the geometry over finite
fields is not restricted to a fixed bage field, in fact,
when we talk about the geometric statements in
the geometry over finite fields, we don’t clearly in-
dicate which finite field we discuss over, even its
characteristic. It might raise the degree of difficul-
ties of geometry theorem proving over finite field.

. In this paper, we discuss the TPM in projective
plane over finite field, show that, after some minor
revision, the Wu’s method can be used in TPM
over finite fields and try to prove some theorems by
Wu's method. Like TPM in elementary geometry,
in this paper, we only consider the theorems whose
hypotheses and conclusions can be expressed by
polynomial equations.

In next section, we will give some fundamental
knowledge on projective plane over finite fields. In
section 3, the Wu's well-ordering principle over fi-
nite field will be diacussed. And in the last section,
we will give some theorems proved by machine as
examples.

2 DBasic concepts of Finite Ge-
ometry

In this section, we will give a survey of projective
plane over finite fields and the knowledge of trans-
lating geometry statements into polynomial equa- -

+ tiona. For more details, see [7].
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Let V3(F,) be the 3-dimensional row vector
space over Fy, P be set of all the 1-dimensional
vector subspaces of V3(¥y), £ be the set of all 2-
dimensional vector subspaces of V3(F,), J be a re-
lation, called incidence, between the elements of P
and the elements of £ such that for any p € P,
l € L, pis incident with [ if and only if p as
a subspace of V5(F,) is contained in [ as & sub-
space of V3(F,). Then if we treat the elements of
P as points, the elements of £ as lines, (P, £, )
becorses s finite projective plane, i.e. it satisfies
the following axioms:

P1 every pair of distinct lines is incident with a-

unique point called intersection.

P2 every pair of distinet points is incident with
a unique line.

P3 there.exist four points such that no three of
them are incident with a single line.

The above finite projective plane is denoted by
PG(2,F,). '
Example; The simplest finite projective plane
is PG{2,¥3) called Fame plane. There are pre-
cisely three lines through each point and three
points on each line. Altogather there are 7 points
and 7 lines in the plane. This projective plane
may be illustrated as in Figure 2.1. The points
are A,B,C,D,E,F and G, and the lines are
ADC,AGE AFB,CGF,CEB and DEF, The
line DEF in this plane shows that straightness is
no longer meaningful in a finite projective plane.

¢{1,0,1)

F(oa.0)

A(LLD) B(1,3,0)

Figure 2.1

" To be concrete, let us introduce the coordi-

- nate description of PCG(2,F;). Let P be a point

of PG(2,F,), that is , P is a 1-dimensional vector
gubspace of V5(F;). Let (20,21,22) be & non-zero
vector in P, then

P = {(Azp, Az1, Azg)|A € Fy}.

For any non-zero ) € ¥, we shall call the non-sero
vector (Azg, Azy, Axg) the coordinates of the point

P, we algo say that (Azo, Az, Az;) is the point P,

Clearly the coordinate of a point P is utiiquely de-
termined up to a non-zero constant multiple of F,.
Let [ be a line in PG(2,F,), that is, { is a 2-
dimensional vector subspace of Vs(F,). Clearly, we
can choose ag,a1,az € Fy, not all zero, such that
the subspace of eolutions of the homogeneous equa-
tion '
agyo + a1y + azzg =0 (1)
is just {, Conversely, for any homogeneous equation
like (1), the subspace of solutions is a 2-dimensional
vector subspace of Va(F,), i.e. is line in PG(2,F,).
Hence we can use homogeneous equation (1} to de-
note a line of PG(2, F,) and the points on $his line
are just those points whose coordinates satisfy the

Q). -

The following two propositions is very impor-
tant for us to translate the relation between points
and lines into polynomial equations.
Proposition 2.1 Three points {(ag, a1, a2}, (bo, b1,
b2), (co,c1,¢z) are collinear, i.e. lie on the same
line, if and only if the discriminate

as a1 ag
bo by by {=0
€ €1 ¢
Proposition 2.2 Three lines
8oz + 171 + agzy =0

bozo + b1z + b2z3 =0
coZo + c121 + cax3 =0

are concurreat, i.e. intersect in a common poiat, if
and only if the discriminate
ag 01 a3
bo b1 b2 =0
¢ €1 ¢C3
Any T € GIL3(F,) defines a point to point
transformation of PG(2,F,) in the following way:
PG(2,F;) — PG(2,F,)

(o, %1, 23) — (w0, %1, 22)T (2)

This is well-defined. The tranformation (2) is
called - & projective transformation of PG(2,F,),
and denoted by 7T,




The set of points (x0, 21, %3) of PG(2,F,) which
satisfy a quadratic homogeneous equation

Y epmwr=0,  (3)
ogichss -

where aj; (0 < § <’k < 2) are elements of Fy and
not all ag; are zero, is called a quadric in PG(2,F,)
and the quadratic equation (3) is called its equa-
tion. ' ' '

The quadric is said to be non-degenerate, if its
equation cannot be tranformed into an equation
with less than 3 varibles under projective tranafor-
mations. :

By a contc in PG(2,F,} we mean a non-
degenerate quadric in PG(2,F,).

Proposition 2.3 The equation of any conic can
be carried by prajective transformations info the
following form

z5 + T1%g = 0. (4)

~ Aline is called the tangent of a conic if it meets
the conic in exactly one point, and it is called a
tangent at this point. _ '
Proposition 2.4. Let A = (zo, Yo, %) be a point
on the conic X%+ Y Z = 0, then the tangent line
of the conic at A has equation:

220X + z0Y +yoZ = 0. {5)

3 Wu's Well-Ordei-ing Principle
over Finite Fields

Let the hypotheses of a theorem have been ex-
“pressed as a finite set of polynomial equations over
a field K:

PS: hi(®1,23,...,20) =0,
hg(mhwg, vy Wn) =0, (ﬁ)

hm(ﬂ:l, 2:2, 140y xn) - 0,

and conclusion as & polynomial equation g{z,, +--,
zp) = 0. We wish to find & method to decide
when and under what conditions we can derive
g(z1,++,2n) = 0 from (6).

For the case that K is a field of characteristic 0,
Prof. Wu Wentsiin has presented a method (called

wall-ordering principle) by which we can get an-
other set of polynomials C§ and a polynomial J
such that

Zero(CS/J) C Zero(PS) C Zero(CS)
and decide whether
Zero{CS/J) C Zerog),

where Zero(CS/J) = Zero(CS}\ Zero(J).

What about the case that K is a finite field. In
this section, we will discuss the Wu’s method over
finite field.  We shall learn late that, after some
minor revision, Wu’s method can also be used over
finite field. :

Let ', be a finite field, zy, 22, -+, 5, be a fixed
number of indeterminates with order oy < a3 <,
+++ < . Similar to the case of characteristic 0, we
can also introduce the concepts of class, rank, ini-
tial, ascending chain and so on for the polynomials
in Fylwy, 22, ", 2n).

Let f € Fyl21,22,  *,2a] be a polynomial.
We define the class of f (denoted by cls{f)) be
the smallest positive integer c, if any, such that

- f € Fylzy,+ -+, 2.}, otherwise 0. The degree of f in

varible z; is denoted by deg(f, 2;).
Now consider f as a polynomial in z, (¢ =
cla{f) # 0), then f can be put into the form:

f=1I- xﬂ + lower degree term in z,,

where d = deg(f,x.). The cocficient I is called
the initdal of f and to be denoted by Init(f). A
polynomial ¢ is said to be reduced with respect to
a polynomial f if ¢(= cl8(f)) = 0 or ¢ # 0 and
deg(f, :1:;) > deg(g, z.).

Let f & Fq[@l,"',mn] With Iﬂ!:t(f) = I &l’ld
cls(f) = ¢ > 0. If & polynomial g is not reduced
with respect to f, then we can find a smallest pos-
itive integer & and polynomials ¢ and r such that

I*.g=gq-f+rand ris reduced w.r.t.f{.

Int fact, r and ¢ are uniquely determined by f and
g. We denote r by prem(g, f) and call it pseudo-
remainder of g with respect to f. The procedure
obtaining r from f and g is called pseudo divigion.
Pseudo division is the most important operation in
Wu’s method.
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Definition 3.1. Let AS : f1, f2, .., fr be a finite
sequance of polynomials in Fylzy, 23, ..., %),

call it an ascending chain if either r = 1 and f; #
Qorr > 1, 0 < class(f1) < dass(fy) < ... <
class(fy) and f; is reduced with respect to f; for
any f < 7.

Given a ascending chain AS : fy, fa, ..., fr with
clase(fy) > 0 and a polynomial g, we define the
pseudo remainder of g with respect to AS induc-
tively as

prem(ga fiafm e ’ fr) = prem{pram(g, f?: e )fr): fl)('
7

By examine the well-ordering procedure of
{10] carefully, we can find that all the operations
needed are addition, substraction, multiplication
and psuedo division of polynoimals. Obviously, all
these computations can be done over finite fields,
hence, we have
Theorem 3,2, Lot Fy be a fixed finite field. Then
there is an mechanical algorithm, for any finite set
PS of polynomials in Fy[21, %2, ..., 2n] We cau get,

_ in finite steps, either a non-zero constant ¢ € Fy or

an asconding chain C'§ such that for any f.€ PS

prem(fi;,CS) =10.

and
Zero(CS/ Iz +++ 1) C Zero(PS) C Zero{CS)
Zero(PS) = Zero(C8/1; - - - L) + 31, Zero(PS,I)

(8)
Prof. Wu called the mechamcal procedure ob-

i taining CS from PS well ordering of PS. The

polynomial set CS in Theorem 3.2 is called a char-
acteristic set of PS.

Above theorem shows that Wu's well-ordering
priciple is also efficient over a fixed finite field and
there is. no special difference. from the case over a
field of characteristic 0. But in practice, we would
face some problems such as the expression and op-
erations of polynomials over finite fields. Many

_packages such as REDUCE do not supply the op-

erations of polynomials over finite fields, but only
the ability of manipulating polynomials whose co-
efficients are computed modulo a given prime num-
ber, Hence we have to find 2 method that permits
us to compute the characteristic sef of a polyno-
mial set over finite field. To be concurrent with

Wu's method, we suggest using polynomials to de-
note the elemente of a field. _

Let Fy; be a finite filed with characteristic p,

g = p™, fo(xzo) be an irreducible polynomial of de-
gree m over Fp, then F is isomorphism to the quo-
tient field Fy(wo]/ < fo(zo) >, hence the elements
of F, can be expressed as polynomials in 2o with
degree < m. The polynomial fg is called generating
polynomial of ¥y,
Theorem 3.3. Let F; be = ﬁxed finite fleld
with characteristic p, fo be a generating polyno-
mial of Fy, PS a polynomial set over F,. Then
PSS c Fp{“’O:xl: fn] IfCs = {fO:cia"‘:cr}
is the characteristic set of PS U {fp}, under mod-
ular p and order 20 < 2 < «» < @y, then
CS = {e1,~+,cr} i8 the characteristic aet of PS
over F; and the pseudo-remainder of a polynorma.i
g with respect to CS over F, can be computed by ™
prem(g,C'S") under modular p. :

The above theorem describes & method to com-
pute the characteristic set of a polynomial set over
finite field. It seems that we are ready to prove ge-
ometry theorems over finite fields. But it is wrong.
Usually, when we talk about geometry statement in

. geometry over finite field , we don’t clearly indicate

which finite field we discuss over, even its charac-
teristic, i.e. the finite field may be F3, F3, F'6 and
so on. So Theorem 3.2 and 3.3 are not enough to
prove geometry theorems since it is imposible to
use them to prove a geometry statement for every
possible finite fields. Fortunately, in this case, all
the polynomials we encountered are polynomials
with integer coefficients which could be regarded
as polynomials over any finite field as well as the
rational field Q. ‘
Theorem 3.4. Let p be a prime number, PS be

a finite set of polynomials over the integer ring Z,
[C'S, p] the characteristic set of PS under modular
p. Then over any finite field ¥, with characteristic
p, we have

Zero{[CS,p]/J) C Zero(PS) C Zero([CS,pl)
Zero{PS) = Zero([C8, p]/J) + Li—, Zero(PS, I;}
(9)
where Ii’s are initials of the polynomials in [C8, 5],
J is the product of I;’s.
Theorem 3,8. Let PS be a finite set of polyno-
mials over Z, {C'S,0] = {p1,*-,pr} be the char-
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. acteristic set of PS over a field of characteristic 0.
Write the initials of the polynomials of [C'S,0] as

Init(p1) = ny 1}
Indt(ps) = na kg

Init(p,) = n. 1}

where n; are the integer factor of Init(p;). Then
over any finite field with characteristic not a prime
factor of nyng +-n, we have

.Ze.to([C'S, 0]/J) € Zero(PS) C Zerof[CS,0])
Zero(P8) = Zero{[0S,0]/7) + 1, Zero(PS,%)
(10)

where J =1} .- Il

To summarize the discussion above, we have
Theorem 3.6. There is a mechanical algorithm,
for any finite polynomial set PS over Z, we can
find a polynomial set, C§ over Z, an integer n and
a polynomial J such that

Zero(CS[J) C Zero(PS) C Zero{CS)

over any finite field of characteristic not a prime
factor of n. ‘

Now we have been in the position to give a
procedure for TPM in projective plane over finite
fields, If the field we work on is a fixed finite field
ot its characteristic has been given, then we can do
the TPM by Theorem-3.3 and 3.4. otherwise, we
can follow the following steps to decide in which
finite field and under what conditions the theorem
is true.

Step 1: Express the hypotheses of theorem by
polynomial set PS, the conclusion by poly-

nomisal g, Then these polynomials would be -

polynomials over Z.

Step 2: Compute the characteristic chain C'S of
PS8 over Z or a field of characteristic 0, and
compute the integer n and polynomial J of
Theorem 3.6,

Step 3: Compute the pseudo remainder
" prem(g,CS) of g with respect to C'S. Then

1. If prem(g,C8) = 0O, then over any fi-
nite field of characteristic not a prime
factor of n, the theorem is true under
non-degenerate condition J#0,

296

2 If prem(g,CS) # 0, we can write
prem(g,CS) = m - p, where m’is the
integer factor of prem(g,CS). Then
over any fleld of characteristic which is
a prime factor of m buf not a prime fac-
tor of n, the theorem is true under non-
degenerate condition J # 0,

If we want to know the theorem is true or false

in the exceptions, we can use the theorems of this
section repeatedly. _
Remark 3.7, In this section, we don’t present the
procedure of computing the characteristic set of a
polynomial set, since it is the same as that in the
case of characteristic 0. In fact, all the techniques
used in proving theorems aver s field of characte:;\
istic O can be used here.

In the next section, we will prove some theo-

rems of projective plane over finite fields by Wu’s
method.

4 Examples

Two triangles AA;B1C1 and AA;B;Cy are said
to be in perspective from a point O if the lines
A1y, B1 By and C1C3 pass through 0.

Example 4.1 ( Desargue’s Theorem), If
AA1BiCy and AA3B;Cs are in perspective from
O, then the intersections of the lines A;B; and
A3 By, of A;Cy and A3C,, and of ByC} and B;C,,
are collinear (Figure 4.1).

Figure 4.1

Prooft Take O = (0,0,1), Ay = {(1,%3,23),
Bl = (34:35)“3)) Cl = (2"7118'39): Az = (310:‘511:
xu), By = (3’13:314:315) , Gy = (zle,wmﬂ:xs),
Q = (zw,220,2n), P = (2a,223,2), B =
(x15, %20, 37). Then the hypotheses of the theo-
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rem can be expressed by

Py =z133; — $30%

Py =g1424 ~ 21325

Py =2zy7%7 — 1628

Py =z 2824 ~ 2213725 — T20Tod4

- +Z087Te + T19T9TE — T19T8TE

By =g31m17%13 — Z21%16%14 — T05168%18
+230216%15 + T10T18%14 — P19T17%16

Py =z12ay — 2372782 ~ Tea%9T)
ta3e2723 + TosTeTy ~ TsTa2s

Py =azprz17310 — TrF16%11 — T26%18%10
+%26T16%12 + T2ET18Z11 — L6L17TY2

Py =za4252) ~ T24%42 — T23T62)
+223%473 + Toz%T3 — T33T5T3

Py =234T14%10 — T34T13%11 — T23T15%10
+Z33% 5712 + T3T16 211 — T23T 14713

The conclugion can be expressed by

Py = zy533219 — TayZaa%e0 — Tre&24%10
+T26%32 %21 + T2 T34 T30 — T3pTdT

By computations over Z, we get the characteristic
set [C8,0] of the first nine polynomials as

Py =z112) — %3073,

Py =144 ~ %1325, .

Pyg =zy727 — T18%8,4

Py =(x3x'¢ - x-rxs)(xsoxmxmx-m = X30X10X156XTRY
= T30T18T13T9 T4 - L30L16T13 LT T
—Z1oR18T13TTLE T T1oX 16215 T80y
+z1pZ16218T0TE — L10T16218%828),

Pyy =zy316(28m4 ~ 2725} (2210182182724
— T X16T16TTTL — T21T16X 13004
+291216T182728 — T19%18T15%7T6
+%10%16%15%0%4),

Prg =(xgx1 ~ x4%g) (X23X16X10X4%1 — X23X18X12X4X)
— 2232 13% 10262 + T23213L10T428
—T33T15T10Z4 T2 + Te3F15T12%571
+T93T18% 1026 %2 — £22213T10T528),

Piy =z10215(x5%1 — T4%3)? (Ta4T152102421
—TuT13L13T4T) — T24T13%10T6T]

+ B2 T3 TI0T4 TS — TI2T16X10T423
+232%18212%6%1),

Pyg =(stl - Kvxz) (xzaxlsxmx'rxx = KagXjeXpaXrXy
—T28216T10T X1 + T26416T1007%S
— L5 LI8TI0TY Ly -+ T25T 16212 28T
+E26Z16210T0%2 ~ Fa5L16%10%6%3),

Py =z10218(28%1 — 2722)*{zor2182 102701
=~ TrTisTyzLrLy ~- 3273163103'03!.
+237%16T108T w8 — TasTyTIORTLS
+2Za5T1621220y ),

and the pseudo-remainder of Piy with respect to
CS is zero. Hence the theorem is true under non-
degenerate condition

J =Xy 2 Xrx13X16X10 (Xa%4 — X7X6 ) {X18K19X7X4
—X16X15X7X4 ~ K16X13X0 X4 + K1eX13X7X6 ) (K51
~X4Xa)(X16X10X4K1 = X13K13KeX1 ~ XpaX10¥8X1
+21881024%3) (2801 ~ Tr¥3 ) (2182100771
—~Z162£12Z7T) — X16T10%6FL + T18T1027%8 )

By further computations, we can assert that the
theorem is true except the case (2gz; ~ zr22)(2521—
z422)(zs24—rrzs) = 0 which means that Ay By and
A3B;, or A1C) and A;C, or B1Cy and ByCo arg
coincide. '
A projective plane in which Desargue’s theorem
holds is called Desarguesian. Hence the projective
plane PG(2,F,) is Desarguesian.
Example 4.2 (Theorem of Pappus). If A, By,
C, ure points of a lines and A3, By, C; are points
of another line in the the same plane, and if 4; B,
and Az B; intersect in P, 4,Cs and A3C; intersect
in @, and B,C; and B;3C'; intersect in R, then P, Q,
and R are collinear {Figure 4.2).

Figure 4.2

This is an important theorem in finite projec-
tive plane. It has also been proved by Wu's method
on machine. The proof of this theorem is omitted
here because there ia no special technique used in
the proof.

A complete guadrangle in the projective plane .
is a configuration consisting of (i} four points, no
three of them are collinear, ard (ii) six lines, each of
them joining a pair of the points. the four points of
a complete quadrangle are called its verteces, and
the six lines are called its diagonal, the intersection
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of any two diagonals is called a diagonal points of
the complete quadrangle, For example, in Figure
2.1, CDGE is a complete quadrangle with diagonal
points 4, F, B.

Example 4.3. The diagonal points of a complete
quadrangle in PG(2,F,) are collinear if g is even.

Proofi Let 4, B, C, and D be the four verteces of
a complete quadrangle, F, F, and G be the inter-
sections of AC and BD, of AB and C'D, and of AD
and BC respectively. Without loss of generality, we
may suppose A = (0,0,1), B = (21,22,23), C =
(24,25, z8), D = (w7,28,%0), E = (210,211, T13),
F = (213,14, 718}, and G = (239,217, 213). Then
the conditions of the theorem can be expressed as
polynomials;

Py = zus — o132y,

Py = xypzy — Tie%s,

Py= zy124 — 21025,

Py= &332¢T1 — T13T7T3 — T1129%) + F1127T3
+219T9Ty — T10787T3,

Py = zisa5ey — 2182423 — L17%6%1
+e17247s + 18Ty — T16TETS,

Ps= 150324 — T162785 — T14To%4

+Z14T706 + T13Teds — TisTsTe,

and the conclusion can be expressed as polynomial:

Pr= 15214%10 — T18%13%11 — Z37T16%10

+&17T13%12 + T16T36TY) — F16T14Z13-

The characteristic set [CS,0] of {Py, P, -, P}
contains

Py = 213072521 ~ T1827%4%2 — $16Ts%e%1
+2162a T4 Ty -+ T16T7Te%2 — T1627%573,
Py = zyay — 21878,
Py = 21528241 — T15T728231 + T13ToT5E)
~Ty3L4Ry — T1skaLedy + Z1827ReLy,
Pyt = myyz: — 11373, ‘
Py = 243282481 — T12T7T4T3 — T10TeTET1
' +810Lo 24Ty — 21028T4TS + T1OTTTEES,
Pig = z124 ~ L1025,

and the pseudo-remainder Pj4 of polynomial Py
wr.t. [C8,0] is

Py = 2z16213%100724%1(T521 ~ 24%2)(2a24
2725 ) (2521 — 2722) (@061 ~ FoTa%2
-~ Egady + mgmz; -+ E‘;ﬂemz - 337335&.‘3),

] . L e
f -
i
i
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so the conclusion is true under condition ¢ is even
and

J #t?ziﬁ%(ﬁ3x1 - mgzg)(:csx.; - m-;ws)(mszl
~x423) # '0,

i.e. theorem is true under non-degenerate condition
J #0. In fact, (zszy — #723)(zazs — 2725) (2521 —
2423) # 0 is always true for a complete quadrangle
and only one of the three variables ), z4 and 2y can
be zero. By further computations, we can assert
that theorem is also true even if one of z3,24 and
z7 are gero. Therefore, theorem is always true.
Theorem 4.4, Any thrée distinct points on a
conic are not collinear.

Proof: Without loss of generality, we may suppose
the conic has equation '

X 4YZ= 0. (11)“

Let A = (z,23,2s), B = (-'u,ws,me), C =
(#7,%s, %0} be three points on the conic. Then the
theorem is equivalent to that provided A, B and C
are collinear, then two of them are coincide. The
condition polynomials are

A on conic! Py =x3zs + 28,

B on conic: Py =zgzs + 23,

C on conic: Ps =zgzg + 27,
A, B, and C are collinear;

Py

—

TLEL; — ToLyT2 — LTEL1
+ZaX4 Ty + TTTeTT — T7TRT5

and conclusion polynomials ave:

A=B: pg = o1 — 247y,
Ps = 232y — T4%3
Py = z3w6 ~ 2523

A=C; Py = zgz; — Ty,
By = omy — 93
Py = zgzy — 2378

B=C: Pu = Zg¥y — TTX5,

Pyy = g¢zq ~ 2728

Pys = 2529 — 8%,
The characteristic set of the set of condition poly-
no:main containg:

Pyu= s+ 21,

Pis = zs2s + 23,

Pig = xﬁmwm{ - a:ﬁa:ﬁa:gzl - zaz',rx%zf
+zgzyais] + sizdzgzy — chagagad,

Pir= oz + 2%
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and the non-degenerate polynomial are
J = zgwpmexamy (52 — T4).
Factorize Pyg as

Pyg =(z5zy — 2472)(78%4 ~ 2725){TaT1 ~ T723)
PR,

then we can check that PI{;‘} is a factor of J and
the pseudo remainders of P, Fy and Py, and of
P11, Pis and Py are zero polynomials with respect
to {Py, Pis, PL), Prr} and {Py, Pis, PG, Pir} re-
spectively. Hence the theorem ig true under condi-
tion ‘

J = zazszame®y (2521 — 2e23) #0

In fact, we can check {hat the theorem is also true
even if J = 0.
Theorem 4.5. If ¢ is odd, then any three distinct
tangents of a conic are not concurrent.
Proof: Without losa of generality, we may suppose
the equation of the conic is (11). The theorem is
equivalent to that for any three points A, B and C,
. if the three tangents at A, B and C meet at a point
" O, then two of the three points 4, B and C must
be coincide.

" Suppose A = (z1,%2,23), B = (&4,%s,%6) and
C = (z7,%3,%p). Then the equations of the tan-
gents at A, B and C afe

Tangent {; at A: 22, X + 23Y + 222 =0
Tangent Iy at B: 254X + zgY + 252 =0
Tangens ls at C: 209X + Y + 232 =0

So the hypotheses can be expressed by
A on the conic: Py = z3zg + 23
B on the conic: B = z¢75.+ zﬁ

C on the conic: Ps = zpzg + 25
1y, 13,13 are concurrent:

Fy =

—2(zpzE Tt — TOZ42S — TyTey
+2aT4ts + TrXeTs — TyZsLs)

and the conclusion polynomials are:

A=B: ps = 2521 ~ 2473,
Ps = w21 — w423
Py = z3zg — 2528
A=C: Ps = ZRILy — Ty,
By = zg2) — 2733
Pip = 233y — z32g
Py = xgxy ~ 2q25,
Py = mozy — 2726
Pis = zywg —~ 2328

B=C:

Working on Z we get the characteristic set [C'S, 0]
of {PI}PMPS)Pi} as

Py = wy2g+ 3,
Py = 2zizsrya? — claizam ~ xpxraiat
+zgrrrizs + edrizay
—zfzsz423), EN
P = zozs + 23,
Pir= axsz2+ a:'f

" Factorige Py us

Py = 2(zgz4 ~ zn:s)gzgml — zyzg){TEE
—giza) = PV pl3) pl8)
2iz3) 18415 418

It is easy to check that the conclusion is true under
condition:

2 fq and J = zgzsrixpTy (2571 — 2423) £ 0

In fact, provided 2 Jg, the conclusion is also true
even if J = 0. .
Theroem 4.6, If g is even, then all the tangents
of a conic meet in a single point.
ProofiWithout loss of gemerality, we may sup-
pose the equation of the conic is (11). Let A =
(31333:33): B = (zis 5y 56}; ¢ = (9"'1” Tg, L9} -
be any three distinct points on the conic, O =
(210,211, #12) be the intersection of the tangents at
A and B, Then the theorem is to say that the tan-
gent at C' pass through O. Hence the hypotheses
are

P, = zyzg + of,

Py = zgxs + 52:

Py = zpz5 + 24,

Py = z1az3 + 1123 + 221071,

- Py = m13%6 + 211%6 + 21074

the conclusion is

Py = 23318 + 21125 -+ 225027




Working modulo 2 we get the characteristic set 9. —, On the decision problem and the
[CS, 2] of the first five polynomials as mechanization of theorem-proving in elemen-
tary geometry, Scientia Sinica, 21{1978), 159-
Py = zpazd(sey ~ 24%9)° 172.
Py = zqy (g1 — 2424)%,
Py = zyzy + 23, 10. , Basic priciple of mechanical theorem
Pio = zgzs + 3, proving in elementary geometry, J. Sys. Sci.
Py = 237q + 23 . & Math, Sci., No. 4(1984}, 207-235. Repub-
lished in J. Automated Reasoning, 2(1986),
and the pseudo-remainder of P w.r.t. [CS,2]is 0. 291-259.

Hence the conclusion is true under condition
11. , On the Foundation of Algebraic Dif-

J = zgxdes(zpzy — z425)t # 0. ferential Geometry. J. Sys. & Math. S,
Vol. 2, No. 4(1989), 200-812.

In fact, the conclusion is always true except the

case o5 = 23 = 0. In this case, we would get A = 12. ——, Automated Derivation of Newton’s
B, a contradiction to the the hypotheses. Hence Gravitational Laws from Kepler's Laws. To
theorem is true. appear in New Trends in Automated Mathe- -
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