Bowdoin College

Math 3603: Advanced Analysis

Prof. Thomas Pietraho
Spring, 2022

Homework 9

1. We aim to define the space of square-integrable functions, but the definition is a little subtle. The purpose of this exercise is to flush out this sublety. Consider a measure space (X, \mathcal{F}, μ) and two functions $f, g: X \rightarrow \mathbb{R}$. We say that they are equivalent iff $f=g$ except perhaps on a set of measure zero. If we write $[g]$ for the equivalence class of functions containing g, then

$$
\mathcal{L}^{2}(X)=\left\{[f] \mid \int_{X} f^{2} d \mu<\infty\right\}
$$

When endowed with the metric ρ defined by $\rho(f, g)=\sqrt{\int_{X}(f-g)^{2}}$, the set $\mathcal{L}^{2}(X)$ becomes a complete metric space.
(a) Verify that the relation $f \sim g$ iff $f=g$ a.e. is indeed an equivalence relation. Be precise.
(b) Prove that $\mathcal{L}^{2}(X)$ is well-defined.
(c) Prove that ρ is well-defined.
2. Consider a sequence Π_{n} of partitions of the interval $[a, b]$ whose mesh approaches zero as n increases, and suppose that $f:[a, b] \rightarrow \mathbb{R}$ is continuous. For each n, let $f_{n}:[a, b] \rightarrow \mathbb{R}$ be the step function constant on each interval of Π_{n} that agrees with f on the left endpoint of each such interval. Prove the following lemma, which will be crucial in our construction of the general stochastic integral:

Lemma. For every $\epsilon>0$, there exists an integer N such that for all $k, l>N$, we have

$$
\left|f_{k}(t)-f_{l}(t)\right|<\epsilon
$$

3. To compute the quadratic variation of Brownian motion (an upcoming attraction), we will need a fact about normally-distributed random variables. Show that if f is a normally-distributed random variable with expected value 0 and variance σ^{2}, then

$$
E\left(f^{4}\right)=3\left(\sigma^{2}\right)^{2}
$$

Appendix: Computing Expected Value of a Normally-Distributed Variable

Computing the expected value of a random variable with a particular distribution is harder than it seems, at least at first glance. If f is the random variable under consideration, the formula is simply

$$
E(f)=\int_{X} f d \mu
$$

However, in many situations the probability space X is not clearly defined and actually carrying this computation out is impossible. However, suppose that we know that f is normally distributed. For simplicity, assume that its expected value is 0 and variance is σ^{2}, so the underlying probability density function is

$$
F(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{x^{2}}{2 \sigma^{2}}}
$$

More precisely, this means that $\mu\left(\{x \in X \mid f(x) \in(a, b)\}=\int_{a}^{b} F(x) d x\right.$. It is this definition that must be applied which will enable us to compute $E(f)$, but the process is not simple. Recall that the Lebesgue integral is defined as a supremum of integrals of simple functions. In fact, by a result from class, we can find an increasing sequence of simple functions $\left\{s_{n}\right\}$ which converges to f. You should review the construction in your notes, but here are some details:
Let I_{i} be the interval $\left[\frac{i-1}{2^{n}}, \frac{i}{2^{n}}\right)$ and let $E_{i}=f^{-1}\left(I_{i}\right)$. The value of the simple function s_{n} on E_{i} is $\frac{i-1}{2^{n}}$. Then, since $\mu\left(\{x \in X \mid f(x) \in(a, b)\}=\int_{a}^{b} F(x) d x\right.$, we have

$$
\mu\left(E_{i}\right)=\int_{I_{i}} F(x) d x
$$

Furthermore:

$$
\int_{X} f d \mu=\lim _{n \rightarrow \infty} \int_{X} s_{n} d \mu=\lim _{n \rightarrow \infty} \sum_{i=1}^{n 2^{n}} \frac{i-1}{2^{n}} \mu\left(E_{i}\right)
$$

We can now use our formula for $\mu\left(E_{i}\right)$ and continue:

$$
\int_{X} f d \mu=\lim _{n \rightarrow \infty} \sum_{i=1}^{n 2^{n}} \frac{i-1}{2^{n}} \int_{I_{i}} F(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n 2^{n}} \int_{I_{i}} \frac{i-1}{2^{n}} F(x) d x
$$

Since $I_{i}=\left[\frac{i-1}{2^{n}}, \frac{i}{2^{n}}\right), \frac{i-1}{2^{n}} \leq x$ for all $x \in I_{i}$, hence

$$
\int_{X} f d \mu \leq \lim _{n \rightarrow \infty} \sum_{i=1}^{n 2^{n}} \int_{I_{i}} x F(x) d x \leq \lim _{n \rightarrow \infty} \sum_{i=1}^{n 2^{n}} \int_{I_{i}} \frac{i}{2^{n}} F(x) d x=\int_{X} f d \mu
$$

By the Sandwich Theorem, this means that

$$
\int_{X} f d \mu=\lim _{n \rightarrow \infty} \sum_{i=1}^{n 2^{n}} \int_{I_{i}} x F(x) d x=\lim _{n \rightarrow \infty} \int_{\cup I_{i}} x F(x) d x=\int_{\mathbb{R}} x F(x) d x
$$

This argument is easily adapted to a more general situation. Consequently, we have just verified:
Theorem. Suppose f is a random variable with probability density function F. Then

$$
E(f)=\int_{X} f d \mu=\int_{\mathbb{R}} x F(x) d x
$$

Note that in the above example, where $F(x)$ is centered at the origin, $E(f)=0$ since $F(x)$ is symmetric about the origin and therefore $x F(x)$ is an odd function.

