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1. We aim to define the space of square-integrable functions, but the definition is a little subtle.
The purpose of this exercise is to flush out this sublety. Consider a measure space (X, F, u) and
two functions f,g: X — R . We say that they are equivalent iff f = g except perhaps on a set
of measure zero. If we write [g] for the equivalence class of functions containing g, then

£2(X) = {If] \/X £ dp < oo}

When endowed with the metric p defined by p(f,g) = 1/ [ (f — g)?, the set £?(X) becomes a

complete metric space.

(a) Verify that the relation f ~ g iff f = g a.e. is indeed an equivalence relation. Be precise.

(b) Prove that £2(X) is well-defined.
(¢) Prove that p is well-defined.

2. Consider a sequence II,, of partitions of the interval [a,b] whose mesh approaches zero as n
increases, and suppose that f : [a,b] — R is continuous. For each n, let f,, : [a,b] — R be
the step function constant on each interval of II,, that agrees with f on the left endpoint of
each such interval. Prove the following lemma, which will be crucial in our construction of the
general stochastic integral:

Lemma. For every € > 0, there exists an integer N such that for
all k,1 > N, we have

|fe(t) = filt)] <e.

3. To compute the quadratic variation of Brownian motion (an upcoming attraction), we will need
a fact about normally-distributed random variables. Show that if f is a normally-distributed
random variable with expected value 0 and variance o2, then

E(f*) = 3(c*)%.



APPENDIX: COMPUTING EXPECTED VALUE OF A NORMALLY-DISTRIBUTED VARIABLE

Computing the expected value of a random variable with a particular distribution is harder than
it seems, at least at first glance. If f is the random variable under consideration, the formula is

simply
B = [ 1an

However, in many situations the probability space X is not clearly defined and actually car-
rying this computation out is impossible. However, suppose that we know that f is normally
distributed. For simplicity, assume that its expected value is 0 and variance is o2, so the
underlying probability density function is
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F(.’L') = %e_ﬁ.

More precisely, this means that u({z € X | f(z) € (a,b)} = f: F(z) dx. It is this definition that
must be applied which will enable us to compute E(f), but the process is not simple. Recall
that the Lebesgue integral is defined as a supremum of integrals of simple functions. In fact, by
a result from class, we can find an increasing sequence of simple functions {s, } which converges
to f. You should review the construction in your notes, but here are some details:

Let I be the interval [ 2n , 2n) and let E; = f~ (IZ) The value of the simple function s,, on E;
is -1, Then, since p({z € X | f(z) € (a,b)} = fa F(z) dx, we have

B = /1 F(z) da
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Furthermore:

We can now use our formula for u(E;) and continue:
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Since I; = [12]1, 2%), o L < g for all = € I;, hence
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f du < nh_}n;ozl/ﬁ zF(z) de < ”11_{20;/], 2—nF(gc) dx = /Xf dp.

By the Sandwich Theorem, this means that
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fdpfhm /xe dr = lim zF(x dx:/xe dx.
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This argument is easily adapted to a more general situation. Consequently, we have just verified:

Theorem. Suppose f is a random variable with probability density function F. Then

:/de,u:/RxF(m)dm.

Note that in the above example, where F(z) is centered at the origin, E(f) = 0 since F(z) is
symmetric about the origin and therefore zF(x) is an odd function.



