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1. We aim to define the space of square-integrable functions, but the definition is a little subtle.
The purpose of this exercise is to flush out this sublety. Consider a measure space (X,F , µ) and
two functions f, g : X → R . We say that they are equivalent iff f = g except perhaps on a set
of measure zero. If we write [g] for the equivalence class of functions containing g, then

L2(X) = {[f ] |
∫
X

f2 dµ < ∞}.

When endowed with the metric ρ defined by ρ(f, g) =
√∫

X
(f − g)2, the set L2(X) becomes a

complete metric space.

(a) Verify that the relation f ∼ g iff f = g a.e. is indeed an equivalence relation. Be precise.
(b) Prove that L2(X) is well-defined.
(c) Prove that ρ is well-defined.

2. Consider a sequence Πn of partitions of the interval [a, b] whose mesh approaches zero as n
increases, and suppose that f : [a, b] → R is continuous. For each n, let fn : [a, b] → R be
the step function constant on each interval of Πn that agrees with f on the left endpoint of
each such interval. Prove the following lemma, which will be crucial in our construction of the
general stochastic integral:

Lemma. For every ϵ > 0, there exists an integer N such that for
all k, l > N , we have

|fk(t)− fl(t)| < ϵ.

3. To compute the quadratic variation of Brownian motion (an upcoming attraction), we will need
a fact about normally-distributed random variables. Show that if f is a normally-distributed
random variable with expected value 0 and variance σ2, then

E(f4) = 3(σ2)2.



Appendix: Computing Expected Value of a Normally-Distributed Variable

Computing the expected value of a random variable with a particular distribution is harder than
it seems, at least at first glance. If f is the random variable under consideration, the formula is
simply

E(f) =

∫
X

f dµ.

However, in many situations the probability space X is not clearly defined and actually car-
rying this computation out is impossible. However, suppose that we know that f is normally
distributed. For simplicity, assume that its expected value is 0 and variance is σ2, so the
underlying probability density function is

F (x) =
1√
2πσ

e−
x2

2σ2 .

More precisely, this means that µ({x ∈ X | f(x) ∈ (a, b)} =
∫ b

a
F (x) dx. It is this definition that

must be applied which will enable us to compute E(f), but the process is not simple. Recall
that the Lebesgue integral is defined as a supremum of integrals of simple functions. In fact, by
a result from class, we can find an increasing sequence of simple functions {sn} which converges
to f . You should review the construction in your notes, but here are some details:
Let Ii be the interval [ i−1

2n , i
2n ) and let Ei = f−1(Ii). The value of the simple function sn on Ei

is i−1
2n . Then, since µ({x ∈ X | f(x) ∈ (a, b)} =

∫ b

a
F (x) dx, we have

µ(Ei) =

∫
Ii

F (x) dx.

Furthermore:

∫
X

f dµ = lim
n→∞

∫
X

sn dµ = lim
n→∞

n2n∑
i=1

i− 1

2n
µ(Ei)

We can now use our formula for µ(Ei) and continue:∫
X

f dµ = lim
n→∞

n2n∑
i=1

i− 1

2n

∫
Ii

F (x) dx = lim
n→∞

n2n∑
i=1

∫
Ii

i− 1

2n
F (x) dx

Since Ii = [ i−1
2n , i

2n ),
i−1
2n ≤ x for all x ∈ Ii, hence∫

X

f dµ ≤ lim
n→∞

n2n∑
i=1

∫
Ii

xF (x) dx ≤ lim
n→∞

n2n∑
i=1

∫
Ii

i

2n
F (x) dx =

∫
X

f dµ.

By the Sandwich Theorem, this means that∫
X

f dµ = lim
n→∞

n2n∑
i=1

∫
Ii

xF (x) dx = lim
n→∞

∫
∪Ii

xF (x) dx =

∫
R
xF (x) dx.

This argument is easily adapted to a more general situation. Consequently, we have just verified:

Theorem. Suppose f is a random variable with probability density function F . Then

E(f) =

∫
X

f dµ =

∫
R
xF (x) dx.

Note that in the above example, where F (x) is centered at the origin, E(f) = 0 since F (x) is
symmetric about the origin and therefore xF (x) is an odd function.
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