
Bowdoin College
Math 3603: Advanced Analysis

Prof. Thomas Pietraho
Spring, 2022

Homework 8

1. The following sequence of exercises concerns the notion of quadratic variation of a function. It
is a notion absent from regular calculus and analysis, since the functions they usually consider
have quadratic variation equal to zero. This will not be the case in the functions which will
interest us in stochastic calculus.

Definition. Consider a random variable f defined on an interval [a, b] ⊂ R. The quadratic
variation of f on [a, b] is defined as

[f, f ]([a, b]) = lim
||Π||→0

n−1∑
j=0

(f(ti+1)− f(ti))
2

where Π is a partition a = t0 < t1 < . . . tn = b and ||Π|| denotes the mesh of Π.

In stochastic calculus, the interval [a, b] is usually of the form [0, T ] and [f, f ]([0, T ]) is written
as [f, f ](T ) and called the variation of f up to time T . When a function is defined only on a
finite set of values, i.e. f : {t1, t2, . . . , tm} → R, quadratic variation is defined with respect to
the counting measure and the resulting formula is

[f, f ]{t1, t2, . . . , tm} =

m−1∑
i=1

(f(ti+1)− f(ti))
2

This version of quadratic variation is useful for discrete processes like a random walk, while the
first version is useful for continuous ones, like Brownian motion (which we are yet to discuss).

Problem: Show that a continuous function f which has a continuous derivative must have zero
quadratic variation for any interval [a, b]. This is the fact alluded to above: functions of interest
in calculus have “uninteresting” quadratic variation.
Hint: Use the Mean Value Theorem to show that

[f, f ]([a, b]) ≤ lim
||Π||→0

||Π|| ·
∫ b

a

|f ′(t)|2dµ.

2. Consider a number a ∈ (0, 1] and interpret it as a sequence of coin flips by expressing it as a
non-terminating binary decimal. Then a determines a random walk function via

fk(a) =

k∑
i=1

Ri(a)

Put another way, fk(a) tells us how far from the origin the random walker is after k flips. For
example, if a = .01110 . . ., then the random walk can be represented by the picture



with f0(a) = 0, f1(a) = 1, f2(a) = 0, f3(a) = −1, f4(a) = −2, and f5(a) = −1. Note that the
notation is somewhat deceptive; once a is fixed, the independent variable in fk(a) is k, and we
treat it as a function of k. Write f.(a) for this function of k. Compute

[f.(a), f.(a)]{1, 2, 3, . . . , n}.

In other words, find the quadratic variation of the first n steps of a random walk. Does it depend
on a?

3. For k ∈ N, Let B1
k(a) be the discrete-time stochastic process defined by

B1
k(a) =

k∑
i=1

Ri(a)

where Ri is the ith Rademacher function and a ∈ (0, 1]. This is the random walk generated
by the non-terminating binary decimal expansion of a. We shorten the time interval between
steps, and define another discrete-time stochastic process

Bn
k/n(a) =

1√
n
B1

k(a)

for k ∈ N. Compute the quadratic variation of Bn
· (a) over the discrete interval [k1/n, k1 +

1/n, . . . , k2/n]. In other words, find

[Bn
· (a), B

n
· (a)]

{k1
n
,
k1 + 1

n
, . . . ,

k2
n

}
.

4. In our verification of existence for Brownian motion, we will use a crucial inequality without
proof. As this is a state which cannot persist, the purpose of this exercise is to remedy the
situation. Let f be a normally-distributed random variable with mean 0 and variance 1 defined
on a probability space X. Let µ be probability measure on X. Show that whenever a > 0,

µ{x | f(x) > a} ≤ 1√
2π

e−
a2

2

a

Hint: You can express the value of the left side precisely using an integral.

5. For each positive integer n, define a function fn : R → R as

fn(x) =
1√
2nπ

e−
x2

2n .

This is the normal density function with mean zero and variance n.

(a) What is the function f(x) = limn→∞ fn(x)? Stated more precisely, what is the pointwise
limit of the sequence of functions {fn(x)}?

2



(b) What is limn→∞
∫∞
−∞ fn(x) dx?

(c) Note that
lim
n→∞

∫ ∞

−∞
fn(x) dx ̸=

∫ ∞

−∞
f(x) dx

Explain this fact in light of the Monotone Convergence Theorem.
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