Bowdoin College

Math 3603: Advanced Analysis

Prof. Thomas Pietraho
Spring, 2022

Homework 7

1. Let the set of Bernoulli sequences be identified with the interval $(0,1]$ in the usual way, and write $a_{i}(x)$ for the $i^{\text {th }}$ digit in the nonterminating binary expansion of a number $x \in(0,1]$. The $i^{t h}$ Rademacher function R_{i} is defined by

$$
R_{i}(x)=\left\{\begin{aligned}
1 & \text { if } a_{i}(x)=1, \text { and } \\
-1 & \text { if } a_{i}(x)=0
\end{aligned}\right.
$$

Do the following exercises.
(a) Show that the set $\left\{R_{i}\right\}$ is a family of independent, identically distributed random variables.
(b) Compute the expected value and variance for each R_{i}.
(c) Let $S_{n}=\sum_{i=1}^{n} R_{i}$, and compute the expected value and variance for each of the random variables $S_{n}-S_{m}$, where $m<n$. Under what circumstances are the random variables $S_{n}-S_{m}$ and $S_{n^{\prime}}-S_{m^{\prime}}$ independent?
2. The purpose of this exercise is to prove a general version of the weak law of large numbers. Consider a family $\left\{f_{i}\right\}$ of independent, identically distributed random variables, and let E be their common expected value and V be their common variance. Show that

$$
\operatorname{Prob}\left(\left|\frac{f_{1}+f_{2}+\ldots f_{n}}{n}-E\right|>\epsilon\right) \leq \frac{V}{\epsilon^{2} n}
$$

for every $\epsilon>0$. From this, conclude
Theorem. Given $\epsilon>0$ and a family $\left\{f_{i}\right\}$ of independent, identically distributed random variables with expected value E and variance V, then

$$
\lim _{n \rightarrow \infty} \operatorname{Prob}\left(\left|\frac{f_{1}+f_{2}+\ldots f_{n}}{n}-E\right|>\epsilon\right)=0
$$

3. Suppose that f and g are two random variables on the probability space (X, \mathcal{F}, μ). Show that
(a) $E(f+g)=E(f)+E(g)$, and
(b) $V(f+g)=V(f)+V(g)$ if f and g are independent.
(c) $V(c f)=c^{2} V(f)$ for $c \in \mathbb{R}$.
