BOWDOIN COLLEGE

Math 3603: Advanced Analysis Prof. Thomas Pietraho Spring, 2022

Homework 3

1. Recall that a set T is dense in a metric space X if there is a sequence of elements of T converging to every element of X. The purpose of this exercise is to show that there can a considerable difference between the measures of a set and a dense subset therein.

Consider the metric space $X = \mathbb{R}$, let \mathcal{M}_X be the collection of Lebesgue-measurable subsets of \mathbb{R} with measure μ_L . Show that for any $\delta > 0$ there is an open dense subset U of \mathbb{R} with $\mu_L(U) < \delta$.

2. This exercise shows that Lebesgue measure on \mathbb{R} is translation invariant. Consider $c \in \mathbb{R}$. Given any subset A of \mathbb{R} , define

$$A + c = \{ x \in \mathbb{R} \mid x - c \in A \}.$$

This is just a translate of the set A by c. Prove that if A is Lebesgue-measurable, then A + c is also Lebesgue-measurable and

$$\mu_L(A+c) = \mu_L(A).$$

Hint: First show this is true for intervals and then verify that the equation holds for outer measure.