BOWDOIN COLLEGE

Math 3603: Advanced Analysis Prof. Thomas Pietraho Spring, 2022

Homework 1

1. Assume the existence of a function μ from the bounded subsets of \mathbb{R} to $\mathbb{R}_{>0}$ which satisfies

$$\mu([a,b]) = b - a \text{ and } \mu(A \sqcup B) = \mu(A) + \mu(B).$$

We have shown that every countable subset S of \mathbb{R} must have $\mu(S) = 0$, that is, it has *measure zero*. Use the Cantor set C to show that even an uncountable set can have measure zero. That is, show

- (a) $\mu(C) = 0$, and
- (b) C is uncountable.
- 2. Let β^* be the set of all infinite sequences of Hs and Ts, that is, the set of *Bernoulli sequences*, and let

 $\beta = \{ s \in \beta^* \mid s \text{ does not degenerate to all } Ts \}.$

Show that $\beta^* \setminus \beta$ is countable. From a measure-theoretic perspective, this allows us to use β instead of β^* when studying the behavior of Bernoulli sequences.

3. Let $R_k: I \to \mathbb{R}$ be the kth Rademacher function and define a product

$$f \cdot g = \int_0^1 fg$$

for Riemann-integrable functions f, g. Show that $R_k \cdot R_k = 1$ for all natural numbers k, and furthermore, $R_k \cdot R_l = 0$ whenever $k \neq l$. If \cdot is viewed as an inner product on the set of Riemann-integrable functions, this exercise shows that the set of Rademacher functions is an orthonormal set.

4. Prove the following lemma.

Lemma. Let I be the unit interval in \mathbb{R} . If f is a non-negative step function on I and $\alpha > 0$, show that

$$\mu(\{a \in I \mid f(a) > \alpha\}) \le \frac{1}{\alpha} \int_0^1 f.$$

5. Consider some infinite set X and let \mathcal{R} be the following collection of sets:

 $A \in \mathcal{R}$ iff A is finite or A^c is finite.

Let μ be a set function on \mathcal{R} defined by $\mu(A) = 0$ if A is finite and $\mu(A) = 1$ if A^c is finite. Examine the following to decide whether μ is a measure.

- (a) If X is countable, is μ additive? countably additive?
- (b) If X is uncountable, is μ additive? countably additive?