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The basic problem

Nature functions to associate the input variables x⃗ with response variables y⃗ :

Goals:

• Prediction: predict responses from future input variables, and
• Information: extract some information about how nature is associating response
to input.



Data modeling culture

Start by assuming a data model for the black box:

Example: response variables = f(input variable, random noise, parameters)

Workflow:

• choose one of a finite number of models for data,
• estimate values of parameters,
• use model for prediction.

Validation: yes-no using goodness-of-fit tests.



Algorithmic modelers

Assume the black box is too complex and unknown to model.

Workflow:

• choose a rich class of surrogate functions; e.g. universal approximators,
• find f within this class so that f(⃗x) ≈ y⃗,
• use f for prediction.

Validation: Predictive accuracy.



Data models: example

One of the oldest data science fields is cryptography.

input plaintext: mathisoftenfun
output ciphertext: xadsfowekdlsdf

Workflow:

• choose one of a finite number of models, i.e. encryption schemes,
• estimate values of parameters,
• reverse model for decryption.

Validation: goodness-of-fit is assessed by the plaintext recovered.
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Caesar cipher: direct substitution of
one character for another in plaintext
yields ciphertext.

Parameter: recover permutation in S26
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Validation: goodness-of-fit is assessed by the plaintext recovered.

Example

Enigma machine: electromechanical
rotor mechanism that scrambles the
26 letters of the alphabet.

Parameters: rotors and their positions



Data models: example

One of the oldest data science fields is cryptography.

input plaintext: mathisoftenfun
output ciphertext: xadsfowekdlsdf

Workflow:

• choose one of a finite number of models, i.e. encryption schemes,
• estimate values of parameters,
• reverse model for decryption.

Validation: goodness-of-fit is assessed by the plaintext recovered.

Example

RSA: prime-based public-key
cryptosystem that is widely used for
secure data transmission

Parameters: two large primes



Data models: example

Diffusion: estimate concentration of particles at time t at position x.

JrPol: wikipedia.com

Workflow:

• model from physics: f(x) ∝ e−
(x−µ)2

t

• estimate µ and t from measurements,
• use f for prediction.

Validation: Kolmogorov–Smirnov test goodness-of-fit test, for example

BScan: wikipedia.com



Data models: example

Regression: y = f(⃗x) = b0 +
∑

i bixi + ϵ with ϵ ∼ N(0, σ)

ncr.ucar.edu

Workflow:

• assume a lineal regression model,
• estimate bi and σ

• use f for prediction with error bounds for prediction

Validation: R2 goodness-of-fit test, value in [0, 1]

analyticsvidhya.com



Data models: summary

There are tremendous advantages to data models:

• Interpretability: if a model is a good emulation of the data-generating
mechanism, prediction and interpretation will be valuable. A scientist will know
whether and why a scientific phenomenon has been observed. For example,
regression models in econometrics:

y = f(⃗x) = b0 +
∑
i
bixi + ϵ

Size of coefficients suggest interventions.
• Derivative results: A precise theoretical formulation of the models allows control
of prediction error and derivative conclusions. For example, a model for equity
prices allows one to predict prices for derivatives such as call options.



Data models: summary

Breiman points out some flaws in data models.

The previous examples illustrate a continuum of models. From ones that clearly
replicate the data-generating process to ones that are used only for the lack of
anything better.

This enterprise has at its heart the belief that a statistician, by imagination
and by looking at the data, can invent a reasonably good parametric class of
models for a complex mechanism devised by nature. –Breiman

If a model is a poor emulation of nature, its conclusions may be wrong. Three changes
in perception:

• Rashomon effect: the multiplicity of good models,
• Occam: conflict between simplicity and accuracy, and
• Bellman: high dimensional data is a curse and a blessing.



Rashomon effect

Rashomon A 1950 Akira Kurosawa film known for a plot device that “involves various
characters providing subjective, alternative and contradictory versions of the same
incident.”

PD-Japan-organization

Suppose two data scientists, each one using a
different data model, fit different models to the
same data set. Suppose that both pass
goodness-of-fit tests.

Question: What have we leaned about the
mechanism generating the data, i.e. Nature?

When data has more than a small number of
dimensions, there will be a large number of
models that pass goodness-of-fit tests.



Rashomon effect and dimensionality

Example (Breiman): Suppose that we have a data set in 30 variables and want to find
the best 5 for linear regression. There are

(30
5
)
≈ 140, 000 choices of five-variable

subsets. On a given set, Breiman found three that all passed a goodness-of-fit test
and had RSS within 1% of each other:

f(⃗x) = y ≈ 2.1+ 3.8x3 − 0.6x8 + 83.2x12 − 2.1x17 + 3.2x27
f(⃗x) = y ≈ −8.9+ 4.6x5 − 0.01x6 + 12.0x15 − 17.5x21 + 0.2x22
f(⃗x) = y ≈ −76.7+ 9.3x2 + 22.0x7 − 13.2x8 + 3.4x11 + 7.2x28

Questions:

• Which one should be use? Each one tells a different story about nature.
• If this is economic data and we would like to propose an intervention by directly
affecting one of the variables, which one should we affect?

This is a common phenomenon in high-dimensional data. It is ubiquitous regardless
of model or algorithm used.



Rashomon effect and simplicity

Example (Efron - Diaconis): Survival of 155 hepatitis patients, 19 variables. Which ones
are important? Below are the coefficients of logistic regression:

Breiman

Variables 1, 7, 11, 14 seem most important. Their experiment: 500 bootstrap samples
and estimate important coefficients.

Conclusion: Of the four variables originally selected, not one was selected in more
than 60% of the samples. The variables identified cannot be taken too seriously.

But: Prediction error rate was 17.4% using all variables, and around 20.0% if only four
were used.

Question: Should one give up accuracy of the model for (perhaps dubious)
interpretability? On more modern data, this effect is more pronounced.



Aside: variable selection

Question: Which variables are important in your data?

Answers:

• Regression: absolute value of regression coefficient, especially if same variable
appears consistently when regression is performed on bootstrapped samples.

• Neural networks and random forests:
• Use ∂N

∂xi
for neural networks.

• No derivatives for random forests: permute only the values of the ith variable in the
data. The variable with the most profound loss of accuracy is the most important.
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Aside: random forests

Random forests are families of decision trees:

Decision tree
Gilgoldm wikipedia.com

Each tree is found using a different random sample of the data. Output of random
forest is a statistic of the individual trees.



Classical algorithmic methods

Perceptron
Qwertyus wikipedia.com

Support vector machine
Lahrmam wikipedia.com

kNN classifier
Antti Ajanki wikipedia.com

Random forest
Venkata Jagannath wikipedia.com

Neural network



Algorithmic modelers: again

Assume the black box is too complex and unknown to model.

In this way, one does not presume to understand what nature does, but hopes to
mimic its actions.

Workflow:

• choose a rich class of surrogate functions; e.g. universal approximators,
• find f within this class so that f(⃗x) ≈ y⃗,
• use f for prediction.

Validation: Predictive accuracy on hold-out data, i.e. generalization error

At the time of Breiman’s writing, the split between data modelers and algorithmic
modelers was estimated to be 98%/2%. It is much different today.



Breiman’s call to action

Pro: Data modelers use simple models with well-understood theoretical properties
that provide the allure of interpretability

Con: Such beneficial properties have limited value if the underlying models are
ill-suited to describe the data being analyzed. Practitioners often “clumsily try, often
strenuously, to find the best of most appropriate model for a particular problem.”

If our goal is to use data to solve problems, then we need to move away from
exclusive dependence on data models and adopt a more diverse set of tools.
Nowhere is it written on a stone tablet what kind of model should be used
to solve problems involving data; the goals in statistics are [simply] to use
data to predict and to get information about the underlying data mechanism.

–Breiman

Breiman was as singular voice at the time. He was proved to be right. In many
applications empirically-built models built solely to improve prediction accuracy have
replaced more traditional data-models. They are sufficiently flexible to capture noisy,
complex processes, and led to fundamental advances the fields of:

• vision and sound and
• natural language processing



But there are problems

Algorithmic models can be uninterpretable, “making it difficult to explain, audit, or
critique the predictions from a complex neural network or random forest.”

• Health applications: a common goal is to predict the occurrence of rare events.
But they are no well-represented in training data. How can we make accurate
predictions in rare and critical situations?

• Public policy: this is a problem similar to the one above. For some populations,
data is often scarce and of poor quality. How can we made good decisions based
on algorithmic models in this environment?

• Risk management: without a strong theoretical framework, how do we assess the
risk inherent in our model’s predictions? Can we use financial data and assess
the risk of ruin in an algorithmic trading strategy?

Bradic and Zhu: Prediction accuracy is no longer satisfactory and should not be the
only measure of success. Some more desiderata:

• Stablity: stability measures how a data result changes when the data and/or
model are perturbed. Adversarial examples show that some neural network
models are very unstable.

• Reproducibility: experiments must be sufficiently documented so other experts
can reproduce them. This is a problem in many scientific fields.

• Inference: How do we test a hypothesis such as the effectiveness of a treatment.
“The impact of machine-learning methods on [inferential] tasks has yet to be
unlocked.”



Inference: example

Setting: input vectors x⃗i ∈ Rn , model prediction Di ∈ {0, 1}, and outcome Yi .

Question: What was the average effect of the treatment? Did the intervention improve
outcomes?

Bradic and Zhu (2021): Used a random forest to predict whether a treatment should be
used and tried to estimate:

E(Yi(1)− Yi(0))

or in English, the average difference in outcome for the population which received the
treatment versus the population that did not. They were not successful in estimating
the true effect. The theory underlying the estimation of average treatment effect is not
robust to cover random forest predictions. And certainly not ones made by neural
networks.



Toward machine-learning systems
Successful technological fields have a moment when they become pervasive,
important, and noticed. They are deployed into the world and, inevitably,
something goes wrong. A badly designed interface leads to an aircraft disas-
ter. A buggy controller delivers a lethal dose of radiation to a cancer patient.
The field must then choose to mature and take responsibility for avoiding the
harms associated with what it is producing. Machine learning has reached
this moment. [T]he community needs to adopt systematic approaches for cre-
ating robust artifacts that contribute to larger systems that impact the real hu-
man world. [We need to move] beyond narrow machine-learning algorithms
to complete machine-learning systems. –Charles Isbell


