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Homework 12 Solutions

1. The goal of this sequence of exercises is to derive the power rule for differentiation. It begins
with a formal definition of the natural logarithm.

(a) Define a differentiable function L : R>0 → R by requiring that

i. L′(x) = 1
x , and

ii. L(1) = 0.

Prove that these conditions define L uniquely. That is, if M is another function satisfying
both of the above, then L(x) = M(x) for all x ∈ R>0. We will write ln(x) instead of L(x).

Solution: Assume that M(x) is another function with M ′(x) = 1
x and M(1) = 0.

Consider the function f = L − M . It is also differentiable and the its derivative is the
difference of the derivatives of L and M . The properties of L and M imply f ′(x) = 0 for
all x ∈ R>0 and f(1) = 0. The first statement implies that f is constant, and the second
implies this constant is zero, i.e. f(x) = L(x)−M(x) = 0 for all x ∈ R>0, as desired.

(b) Show that lnx is a bijection from R>0 to R.

Solution: We first show that lnx is injective. Suppose not, and assume lnx = ln y
for some numbers x and y. Since [x, y] is compact and lnx is continuous (it is, after all,
differentiable), it attains a maximum and a minimum at some points, say a and b. If,
as sets, {a, b} = {lnx, ln y}, then lnx must be constant, which cannot be true since it’s
derivative is not equal to zero anywhere.

Otherwise, one of the points a or b must lie in the interior of the interval [lnx, ln y], and
by a theorem from class, the derivative of lnx must equal zero there. This is again a
contradiction, since the derivative of lnx is always positive.

To show that lnx is surjective, we use the fact that its image has no upper or lower bound.
Knowing this, let M ∈ R. Then there is a point x1 for which f(x1) > M and another point
at which f(x2) < M (otherwise, the image of f would be bounded, either above or below.
Since lnx is continuous, the intermediate value theorem implies there is a point c between
x1 and x2 for which f(c) = M . Since this can be done for every M ∈ R, lnx is surjective.

To finish, we must show that lnx is not bounded above or below. We focus on “above.”
We know that ln 1 = 0 with slope at least 1

2 on the interval [1, 2]. This means ln 2 ≥ 1
2 .
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Similarly, its slope is at least 1
3 on [2, 3] so that ln 3 ≥ 1

2 + 1
3 . Continuing in this manner,

lnn ≥
n∑
2

1

n
.

Since the latter diverges to infinity, lnx has no upper bound.

1If you are a stickler, this fact requires proof. If ln 2 < 1
2
, the Mean Value Theorem would guarantee a point c ∈ (1, 2)

where ln′(c) = ln(2)−ln(1)
2−1

= ln(2) < 1
2
. But we know that for all c ∈ (1, 2), ln′(c) = 1

c
> 1

2
. Hence ln 2 ≥ 1

2
.



(c) Since lnx is a bijection, it has an inverse function, which we define to be ex. Using the
chain rule, prove that (ex)′ = ex.

Solution: Note that eln(x) = x. Using the chain rule:

(eln x)′ = e′(ln(x)) · 1
x
= 1

Let y = lnx, so that x = ey. Our equation can be rewritten as

(ey)′ · 1

ey
= 1

or, in other words, (ey)′ = ey, as desired.

(d) For a positive real number x and any real α, we can now define xα as

xα = eα ln x.

Armed with this definition, show that

(xα)′ = αxα−1.

Solution: Note that

(xα)′ = (eα ln x)′ = eα ln x · α 1

x
= xα · α · 1

x
= αxα−1.

2. Suppose that f is differentiable at every point of [a, b] and suppose that the derivative is never
zero. Prove that f is strictly monotonic on [a, b]. Note that f ′ is not assumed to be continuous.

Solution: Suppose that f is not strictly monotonic. Without loss of generality, there are
points x1, x2 and x3 in the interval for which

f(x1) ≤ f(x2) ≥ f(x3).

Again, without loss of generality, assume that f(x1) ≤ f(x3). Since f is differentiable and
therefore continuous, by the intermediate value theorem there is a point x4 ∈ [x1, x2] where
f(x4) = f(x3). By the mean value theorem for derivatives, there most be a point c ∈ [x4, x3]
where f ′(c) = 0. This is a contradiction, so f must be strictly monotonic.

3. From class, we know that bounded continuous functions on a compact interval in R are Riemann
integrable. The following exercise will show that a function can have one jump or removable
discontinuity and still remain Riemann integrable. Consider an interval [a, b] ∈ R and a point
c ∈ [a, b]. Define a function f : [a, b] → R by f(x) = 0 unless x = c, when f(c) = 1. In other
words, f = χ{c}, the indicator function of the set {c}.

(a) Show that f is Riemann integrable on [a, b].

Solution: Consider a partition P of the interval [a, b]. The lower sum L(f, P ) is zero,
and if c lies in the ith subinterval of P , the upper sum U(f, P ) equals ∆xi. Given ϵ > 0,
let P be a partition for which ∆xi < ϵ/2. Then U(f, P ) = ϵ/2. But this means

U(f, P )− L(f, P ) = ϵ/2− 0 = ϵ/2 < ϵ.

By a theorem from class, this shows that f is Riemann integrable.

Alternately, one can show that U(f) = L(f) = 0 by a similar argument.
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(b) Conclude that any function which is continuous except for possibly for a jump or a remov-
able discontinuity at one point is Riemann integrable.

Solution: If g has a removable discontinuity at c ∈ [a, b], then g can be written as
g = λf + h where λ ∈ R, f is the function from the first part of the problem, and h is
continuous. Since both λf and h are Riemann integrable, so is g.

If, on the other hand, g has a jump discontinuity at c ∈ [a, b], then g is Riemann integrable
on [a, c] and [c, b]; it is continuous on one of these intervals, and has a removable disconti-
nuity on the other. By a theorem from class, g must be Riemann integrable on all of [a, b].

In fact, by induction one can extend this exercise to show that a finite number of such dis-
continuities do not affect Riemann integrability. Consequently, things like step functions are
Riemann integrable as well. Can this requirement be relaxed even further?

The answer is “yes”, and in fact, by quite a bit. The complete answer was found by Henri
Lebesgue in his doctoral thesis.2 The complete answer involves the measure of a set. We will
say a subset of R has measure zero if for every ϵ > 0, it can be covered by a countable number
of open intervals whose total length is less than ϵ. It turns out that the rational numbers and
the Cantor set both have measure zero. Here is Lebesgue’s observation:

Theorem (Riemann-Lebesgue Theorem). Suppose that f : [a, b] → R is a bounded function
and let D be the set of points where it is discontinuous. Then f ∈ R[a, b] if and only if D has
measure zero.

We will not have a chance to prove this in this class, so you will have to refrain using this result
in what follows!

4. Suppose that f : [a, b] → R is continuous and f(x) ≥ 0 for all x ∈ [a, b]. Prove that
∫ b

a
f = 0 iff

f is the zero function.

Solution: The reverse direction is easy, so let’s prove the forward direction. Assume that∫ b

a
f = 0 but that f ̸= 0; that is, for some c ∈ [a, b], f(c) > 0. Let ϵ = f(c)/2. Since f is

continuous, there is a δ > 0 so that if |x − c| < δ, then |f(x) − f(c)| < ϵ, or equivalently,
|f(x)| ≥ f(c)/2.

Let P be a partition that includes the interval [c− δ, c+ δ]. Then L(f, P ) > f(c)/2 · δ > 0. But
since L(f) ≥ L(f, P ), this is a contradiction and f must equal zero everywhere.

2Therein, he also constructed what is known today as the Lebesgue integral that has come to completely supercede
the Riemann integral. But this is a story for Math 3603.
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