Bowdoin College

Math 2603: Introduction to Analysis
Prof. Thomas Pietraho
Fall, 2022

Homework 9

1. Consider a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which satisfies $f(x)=0$ for all $x \in \mathbb{Q}$. Show that if f is continuous, then in fact $f(x)=0$ for all $x \in \mathbb{R}$!
2. This problem revisits the notion of an additive homomorphism, this time with a slightly enlarged domain. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is an additive homomorphism; that is, it satisfies

$$
f(x+y)=f(x)+f(y) \text { for all } x, y \in \mathbb{R} .
$$

Describe the set of all possibilities for f if we assume that it is continuous.
Extra Credit: What are the possibilities for f if we don't assume that it is continuous?
3. Let (S, ρ) be a metric space endowed with the discrete metric. Describe all of its connected subsets.
4. Suppose that $f: S_{1} \rightarrow S_{2}$ is a continuous bijection between metric spaces (S_{1}, ρ_{1}) and (S_{2}, ρ_{2}). Since f is a bijection, it has an inverse.

Question: Is f^{-1} is continuous as well?

There are certain important settings when the answer is "yes." For instance, if $\left(S_{1}, \rho_{1}\right)=$ $\left(S_{2}, \rho_{2}\right)=(\mathbb{R},|\cdot|)$ this result is called the Invariance of Domain Theorem. Unfortunately, there are settings where the answer may be "no." Find metric spaces S_{1} and S_{2} and a continuous bijection between them whose inverse is not continuous.
Hint: One possible example uses a discrete metric space.

