Bowdoin College

Math 2603: Introduction to Analysis
Prof. Thomas Pietraho
Fall, 2022

Homework 8

1. The original definition of a continuous function is fairly cumbersome for daily use. The goal of this exercise is to verify a somewhat more palatable characterization of continuous functions. Let $\left(S_{1}, \rho_{1}\right)$ and (S_{2}, ρ_{2}) be metric spaces and consider $f: S_{1} \rightarrow S_{2}$. Show that f is continuous iff for every open set $U \subset S_{2}$, the inverse image $f^{-1}(U)$ in S_{1} is also an open set.
2. Consider a function $f: S \rightarrow \mathbb{R}$ from some metric space (S, ρ) into the real numbers. Define another function $|f|: S \rightarrow \mathbb{R}$ by letting

$$
|f|(x)=|f(x)| \quad \forall x \in S
$$

(a) Suppose that f is continuous; does that imply that $|f|$ is continuous as well?

Hint: from class we know that continuity is preserved under composition of functions.
(b) Suppose that $|f|$ is continuous; does that imply that f is continuous as well?
3. Consider a function $f: S_{1} \rightarrow S_{2}$. Show that if x is not a limit point of S_{1}, then f must be continuous at x.
4. Show that every polynomial $p: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function.
5. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
f(x, y)=\left\{\begin{array}{cl}
\frac{x y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

The plot of this function is somewhat interesting. Below are two perspectives:

Determine whether $f(x, y)$ is continuous at the origin $(0,0)$ and justify your answer.

