BOWDOIN COLLEGE

Math 2603: Introduction to Analysis Prof. Thomas Pietraho Fall, 2022

Homework 8

- 1. The original definition of a continuous function is fairly cumbersome for daily use. The goal of this exercise is to verify a somewhat more palatable characterization of continuous functions. Let (S_1, ρ_1) and (S_2, ρ_2) be metric spaces and consider $f : S_1 \to S_2$. Show that f is continuous iff for every open set $U \subset S_2$, the inverse image $f^{-1}(U)$ in S_1 is also an open set.
- 2. Consider a function $f : S \to \mathbb{R}$ from some metric space (S, ρ) into the real numbers. Define another function $|f| : S \to \mathbb{R}$ by letting

$$|f|(x) = |f(x)| \qquad \forall x \in S$$

- (a) Suppose that f is continuous; does that imply that |f| is continuous as well?
 Hint: from class we know that continuity is preserved under composition of functions.
- (b) Suppose that |f| is continuous; does that imply that f is continuous as well?
- 3. Consider a function $f: S_1 \to S_2$. Show that if x is not a limit point of S_1 , then f must be continuous at x.
- 4. Show that every polynomial $p : \mathbb{R} \to \mathbb{R}$ is a continuous function.
- 5. Consider the function $f : \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0) \end{cases}$$

The plot of this function is somewhat interesting. Below are two perspectives:

Determine whether f(x, y) is continuous at the origin (0, 0) and justify your answer.