BOWDOIN COLLEGE

Math 3603: Advanced analysis Prof. Thomas Pietraho

Homework 7

1. Let the set of Bernoulli sequences be identified with the interval (0, 1] in the usual way, and write $a_i(x)$ for the i^{th} digit in the nonterminating binary expansion of a number $x \in (0, 1]$. The i^{th} Rademacher function R_i is defined by

$$R_i(x) = \begin{cases} 1 & \text{if } a_i(x) = 1, \text{ and} \\ -1 & \text{if } a_i(x) = 0. \end{cases}$$

Do the following exercises.

- (a) Show that the set $\{R_i\}$ is a family of independent, identically distributed random variables.
- (b) Compute the expected value and variance for each R_i .
- (c) Let $S_n = \sum_{i=1}^n R_i$, and compute the expected value and variance for each of the random variables $S_n S_m$, where m < n. Under what circumstances are the random variables $S_n S_m$ and $S_{n'} S_{m'}$ independent?
- 2. The purpose of this exercise is to prove a general version of the weak law of large numbers. Consider a family $\{f_i\}$ of independent, identically distributed random variables, and let E be their common expected value and V be their common variance. Show that

$$\operatorname{Prob}\left(\left|\frac{f_1 + f_2 + \dots + f_n}{n} - E\right| > \epsilon\right) \le \frac{V}{\epsilon^2 n}$$

for every $\epsilon > 0$. From this, conclude

Theorem. Given $\epsilon > 0$ and a family $\{f_i\}$ of independent, identically distributed random variables with expected value E and variance V, then

$$\lim_{n \to \infty} \operatorname{Prob}\left(\left| \frac{f_1 + f_2 + \dots + f_n}{n} - E \right| > \epsilon \right) = 0.$$

- 3. Suppose that f and g are two random variables on the probability space (X, \mathcal{F}, μ) . Show that
 - (a) E(f+g) = E(f) + E(g), and
 - (b) V(f+g) = V(f) + V(g) if f and g are independent.
 - (c) $V(cf) = c^2 V(f)$ for $c \in \mathbb{R}$.