Bowdoin College

Math 2603: Introduction to Analysis

Prof. Thomas Pietraho
FALL, 2022

Homework 7

1. Recall the following definition from class:

Definition. Suppose that (S, ρ) is a metric space. A function $f: S \rightarrow S$ is a contraction map if there is a constant $0<\alpha<1$ such that

$$
\rho(f(x), f(y)) \leq \alpha \rho(x, y)
$$

Intuitively, a contraction map shrinks the distance between points of our metric space by at least a factor of α. One of the more important theorems we prove in the course shows that for every contraction map f on a complete metric space, there is a point $x \in S$ such that $f(x)=x$. However, if we relax the restriction on f and require only that

$$
\rho(f(x), f(y))<\rho(x, y)
$$

for all distinct $x, y \in S$, then a fixed point may not exist. Find an example of such a function f and make sure to verify your assertions.
2. Let A be an $n \times n$ matrix and $\vec{b} \in \mathbb{R}^{n}$. Define a function $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by

$$
T(\vec{x})=A \vec{x}+\vec{b}
$$

We can think of points in \mathbb{R}^{n} as states in a physical system, each entry representing one of its parameters. For example, \vec{x} can represent the present state of the economy and each entry one of the leading economic indicators. One can model how this system evolves over time by forming a sequence $\overrightarrow{x_{0}}=\vec{x}$ and defining the successive states recursively by

$$
\vec{x}_{i+1}=T\left(\vec{x}_{i}\right) .
$$

A recurrent question in a number of disciplines is the following:

Question: Does the physical system described by the iterations of the transformation T reach an equilibrium? That is, is there a vector \vec{x} so that $T(\vec{x})=\vec{x}$, or in other words, does T have a fixed point?

The Contraction Mapping Theorem hints at one possible answer. The object of this exercise is to find out under what circumstances the transformation T is a contraction map.
(a) Consider the metric space $\left(\mathbb{R}^{n}, \rho_{\infty}\right)$. Write $A=\left(a_{i j}\right)$ for a matrix in \mathbb{R}^{n} and let $\vec{b}=$ $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$. Show that the map T defined above is a contraction map if there exists an $\alpha \in[0,1)$ such that

$$
\sum_{j}\left|a_{i j}\right| \leq \alpha
$$

for every value of i. In other words, T is a contraction map if for every row of A, the sum of the absolute values of its entries is less than one.
Hint: Let $\vec{y}=T(\vec{x})$ and write the coordinates of \vec{y} in terms of the $a_{i j}, x_{i}$, and b_{i}.
(b) Now consider the metric space $\left(\mathbb{R}^{n}, \rho_{2}\right)$. Again write $A=\left(a_{i j}\right)$ for a matrix in \mathbb{R}^{n} and let $\vec{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$. Show that the map T defined above is a contraction map if there exists an $\alpha \in[0,1)$ such that

$$
\sum_{i, j} a_{i j}^{2} \leq \alpha
$$

That is, T is a contraction map if the sum of squares of the entries of A is less than one.
Hint: Use the Cauchy-Schwarz inequality.
(c) Find a matrix A that satisfies the condition derived in (a) but not the one derived in (b); and vice-versa.
(d) The restrictions derived in (a) and (b) are satisfied by two different sets of matrices. Nevertheless, the map T associated with a matrix A in either set will have a fixed point! How could you use the ideas in (a) and (b) to expand the set of transformations T that have a fixed point even further?
3. Suppose that (S, ρ) is a metric space and let $f: S \rightarrow S$ be the identity function defined by $f(s)=s$ for all $s \in S$. Show that f is continuous by using the our original definition of continuity.
4. Suppose that (S, ρ) is a metric space and let $f: S \rightarrow S$ be a contraction mapping, so that there is a positive constant $\alpha<1$ such that for all distinct $x, y \in S$, we have

$$
\rho(f(x), f(y)) \leq \alpha \rho(x, y)
$$

Show that f is a continuous function.
5. Show that the absolute value function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=|x|$ is continuous.

