Bowdoin College

Math 2603: Introduction to Analysis

Prof. Thomas Pietraho
FALL, 2022

Homework 6

1. Consider a metric space S with metric ρ. If A and B are subsets of S, we can define the distance between them to be

$$
\rho(A, B)=\inf _{a \in A, b \in B} \rho(a, b) ;
$$

that is, the infimum of the set of all possible distances between a point in A and a point in B. Show that $\rho(A, B)=0$ if $A \cap B \neq \varnothing$ and, by providing a counterexample, show that the converse need not hold.
2. Suppose that (S, ρ) is a metric space. If T is a subset of S and t is a limit point of the set T, show that there is a sequence of points $\left\{p_{n}\right\}_{n=1}^{\infty}$ in T such that

$$
\lim p_{n}=t
$$

3. Consider a sequence $\left\{s_{n}\right\}$ of real numbers satisfying $a \leq s_{n} \leq b$ for some $a, b \in \mathbb{R}$ and all $n \in \mathbb{N}$. Suppose that the sequence converges and that $\lim s_{n}=s$. Show that $a \leq s \leq b$.
4. We will say that a sequence of real numbers is bounded iff its elements form a bounded subset of \mathbb{R}.
(a) Show that if $\left\{c_{n}\right\}$ is a bounded sequence of real numbers, then there is a positive number $D \in \mathbb{R}$ such that $\left|c_{n}\right| \leq D$ for all $n \in \mathbb{N}$.
(b) Let $(S, \rho)=(\mathbb{R},|\cdot|)$ and consider a sequence $\left\{s_{n}\right\}$ such that $\lim s_{n}=0$. Suppose further that $\left\{c_{n}\right\}$ is a bounded sequence. Show that the sequence of their products $\left\{c_{n} s_{n}\right\}$ converges and that

$$
\lim c_{n} s_{n}=0
$$

Note that we have not assumed that $\left\{c_{n}\right\}$ converges!
5. In our proof of the convergence of the alternating harmonic series, we will use the fact that for every integer m greater than $n \in \mathbb{N}$, the following inequality holds

$$
\left|\frac{1}{n+1}-\frac{1}{n+2}+\frac{1}{n+3}-\ldots \pm \frac{1}{m}\right|<\frac{1}{n}
$$

Prove it.
6. Define a sequence of real numbers $s_{n}=\left(1+\frac{1}{n}\right)^{n}$. Show that the sequence is monotone and bounded, concluding that it must converge. Its limit is defined as the familiar number:

$$
\lim \left(1+\frac{1}{n}\right)^{n}=e
$$

Hint: Use the binomial theorem. Also, feel free to use without proof the fact that terms of this sequence are always smaller than 3 . But if you can, prove that this bound does indeed hold.

