BOWDOIN COLLEGE

Math 2603: Introduction to Analysis Prof. Thomas Pietraho Fall, 2022

Homework 5

- 1. Show that the union of two compact sets is compact.
- 2. Suppose that T is closed and U is compact. Show that $T \cap U$ is compact.
- 3. Show that if T_i is compact for every $i \in I$, then so is the intersection $\bigcap_{i \in I} T_i$.
- 4. The Heine-Borel Theorem shows that all closed and bounded subsets of the metric space \mathbb{R} are compact. Its proof uses the least upper bound property of \mathbb{R} in an essential way. Hence it is a natural question to examine whether such a theorem is still true in a metric space which does not satisfy the least upper bound property. This is the aim of the final question:

Question: Consider the metric space \mathbb{Q} with the usual metric. Let $T = (a, b) \cap \mathbb{Q}$ where both a and b are irrational numbers. Show that T is both closed and bounded, but that it is not compact.

5. Prove the following proposition. We will use it a number of times in the course to show that two points of a metric space are equal.

Proposition. Consider points p and p' in a metric space (S, ρ) . If $\rho(p, p') < \epsilon$ for every $\epsilon > 0$, then p = p'.