Bowdoin College

Math 2603: Introduction to Analysis

Prof. Thomas Pietraho
FALL, 2022

Homework 3

1. Consider vectors \vec{v} and \vec{w} in \mathbb{R}^{n}. We can define a function $\rho_{1}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ by letting

$$
\rho_{1}(\vec{v}, \vec{w})=\sum_{i=1}^{n}\left|v_{i}-w_{i}\right|
$$

In \mathbb{R}^{2} this is called the "taxicab metric." Prove that when endowed with this metric, \mathbb{R}^{2} becomes a metric space.
2. Recall the definitions of the metrics ρ_{2}, ρ_{1}, and ρ_{∞} on the set \mathbb{R}^{n} from class. They are a part of a larger family of metrics called the p-metrics.

Definition. Let $\vec{v}=\left(v_{1}, \ldots, v_{n}\right)$ and $\vec{w}=\left(w_{1}, \ldots, w_{n}\right) \in \mathbb{R}^{n}$. For $p \in \mathbb{N}$, we define a function

$$
\rho_{p}(\vec{v}, \vec{w})=\sqrt[p]{\left|v_{1}-w_{1}\right|^{p}+\ldots\left|v_{n}-w_{n}\right|^{p}} .
$$

It turns out that this is always a metric. I urge you to stay away from the proof of the triangle inequality. ${ }^{1}$. Armed with this knowledge, try do visualize how these metrics are interrelated by the following exercise. Let $\overrightarrow{0}$ be the origin in \mathbb{R}^{n}. Draw the unit sphere $S_{1}(\overrightarrow{0})$ in the metric spaces $\left(\mathbb{R}^{2}, \rho_{2}\right),\left(\mathbb{R}^{2}, \rho_{1}\right),\left(\mathbb{R}^{2}, \rho_{\infty}\right),\left(\mathbb{R}^{3}, \rho_{1}\right)$, and $\left(\mathbb{R}^{2}, \rho_{3}\right)$.
3. Recall the field $\mathbb{Q}[\sqrt{2}]$ from the previous assignment. Since all of its elements are real numbers, it inherits a the usual ordering from \mathbb{R} and it is easy to verify that $\mathbb{Q}[\sqrt{2}]$ is also an ordered field. Find another way of ordering the elements of $\mathbb{Q}[\sqrt{2}]$, with the new order denoted by \prec, so that $(\mathbb{Q}[\sqrt{2}], \prec)$ is still an ordered field.
4. Show that it is possible to find a metric space (S, ρ), points $x, y \in S$, and positive numbers r_{1} and r_{2} so that

$$
B_{r_{1}}(x) \subseteq B_{r_{2}}(y),
$$

and $r_{1}>r_{2}$; that is, a ball with a smaller radius contains a ball with a larger radius (!).
5. The following result will be crucial when we start looking at point-set topology. Recall that if $A \subset X$ and $C \subset Y$, then

$$
f(A)=\{y \in Y \mid f(x)=y \text { for some } x \in A\}
$$

and

$$
f^{-1}(C)=\{x \in X \mid f(x) \in C\}
$$

Note that f need not be invertible for $f^{-1}(C)$ to be defined.
Theorem: Suppose that $f: X \rightarrow Y$ is a function. Then
(a) If $A, B \subset X$, then $f(A \cup B)=f(A) \cup f(B)$.
(b) If $A, B \subset X$, then $f(A \cap B) \subset f(A) \cap f(B)$.

[^0](c) If $A, B \subset X$, then $f(A \backslash B) \supset f(A) \backslash f(B)$.
(d) If $C, D \subset Y$, then $f^{-1}(C \cup D)=f^{-1}(C) \cup f^{-1}(D)$.
(e) If $C, D \subset Y$, then $f^{-1}(C \cap D)=f^{-1}(C) \cap f^{-1}(D)$.
(f) If $C, D \subset Y$, then $f^{-1}(C \backslash D)=f^{-1}(C) \backslash f^{-1}(D)$.

So set operations "play nicely" with images and inverse images, except for two cases. Prove that the second and third parts of the theorem are true, and find a counterexample in each of these two cases that shows we don't always have equality in those two cases.

[^0]: ${ }^{1}$ You've been warned

