BOWDOIN COLLEGE

Math 2603: Introduction to Analysis Prof. Thomas Pietraho Fall, 2022

Homework 3

1. Consider vectors \vec{v} and \vec{w} in \mathbb{R}^n . We can define a function $\rho_1: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ by letting

$$\rho_1(\vec{v}, \vec{w}) = \sum_{i=1}^n |v_i - w_i|.$$

In \mathbb{R}^2 this is called the "taxicab metric." Prove that when endowed with this metric, \mathbb{R}^2 becomes a metric space.

2. Recall the definitions of the metrics ρ_2, ρ_1 , and ρ_∞ on the set \mathbb{R}^n from class. They are a part of a larger family of metrics called the *p*-metrics.

Definition. Let $\vec{v} = (v_1, \dots, v_n)$ and $\vec{w} = (w_1, \dots, w_n) \in \mathbb{R}^n$. For $p \in \mathbb{N}$, we define a function

$$\rho_p(\vec{v}, \vec{w}) = \sqrt[p]{|v_1 - w_1|^p + \dots |v_n - w_n|^p}.$$

It turns out that this is always a metric. I urge you to stay away from the proof of the triangle inequality. Armed with this knowledge, try do visualize how these metrics are interrelated by the following exercise. Let $\vec{0}$ be the origin in \mathbb{R}^n . Draw the unit sphere $S_1(\vec{0})$ in the metric spaces (\mathbb{R}^2, ρ_2) , (\mathbb{R}^2, ρ_1) , $(\mathbb{R}^2, \rho_\infty)$, (\mathbb{R}^3, ρ_1) , and (\mathbb{R}^2, ρ_3) .

- 3. Recall the field $\mathbb{Q}[\sqrt{2}]$ from the previous assignment. Since all of its elements are real numbers, it inherits a the usual ordering from \mathbb{R} and it is easy to verify that $\mathbb{Q}[\sqrt{2}]$ is also an ordered field. Find another way of ordering the elements of $\mathbb{Q}[\sqrt{2}]$, with the new order denoted by \prec , so that $(\mathbb{Q}[\sqrt{2}], \prec)$ is still an ordered field.
- 4. Show that it is possible to find a metric space (S, ρ) , points $x, y \in S$, and positive numbers r_1 and r_2 so that

$$B_{r_1}(x) \subseteq B_{r_2}(y)$$
,

and $r_1 > r_2$; that is, a ball with a smaller radius contains a ball with a larger radius (!).

5. The following result will be crucial when we start looking at point-set topology. Recall that if $A \subset X$ and $C \subset Y$, then

$$f(A) = \{ y \in Y \mid f(x) = y \text{ for some } x \in A \},$$

and

$$f^{-1}(C) = \{ x \in X \mid f(x) \in C \}.$$

Note that f need not be invertible for $f^{-1}(C)$ to be defined.

Theorem: Suppose that $f: X \to Y$ is a function. Then

- (a) If $A, B \subset X$, then $f(A \cup B) = f(A) \cup f(B)$.
- (b) If $A, B \subset X$, then $f(A \cap B) \subset f(A) \cap f(B)$.

¹You've been warned

- (c) If $A, B \subset X$, then $f(A \setminus B) \supset f(A) \setminus f(B)$.
- (d) If $C, D \subset Y$, then $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$.
- (e) If $C, D \subset Y$, then $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$.
- (f) If $C, D \subset Y$, then $f^{-1}(C \setminus D) = f^{-1}(C) \setminus f^{-1}(D)$.

So set operations "play nicely" with images and inverse images, *except* for two cases. Prove that the second and third parts of the theorem are true, and find a counterexample in each of these two cases that shows we don't always have equality in those two cases.