BOWDOIN COLLEGE

Math 2603: Introduction to Analysis Prof. Thomas Pietraho Fall, 2022

Homework 2

1. Define the set of real numbers

 $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}.$

Show that together with the usual addition and multiplication, $(\mathbb{Q}[\sqrt{2}], +, \cdot)$ forms a field. You may freely use that fact that $(\mathbb{Q}, +, \cdot)$ and $(\mathbb{R}, +, \cdot)$ are fields.

- 2. Suppose that $(F, +, \cdot)$ is a field and x, y, and z are elements of F. Show that
 - (a) If $x \neq 0$ and xy = xz, then y = z.
 - (b) If $x \neq 0$ and xy = x, then y = 1.
- 3. Suppose that $(F, +, \cdot)$ is an ordered field with $x, y \in F$. Show that
 - (a) If x < y then -y < -x.
 - (b) 1 > 0.
- 4. Can the set of complex numbers C form and ordered field?
 Hint: Consider the relationship between i and 0.
- 5. Consider a set $S \subset \mathbb{R}$ and suppose that it has a lower bound. Define the set -S as $\{-r \mid r \in S\}$.
 - (a) Define precisely the notion of a greatest lower bound for a set S and explain why one exists if S has a lower bound. The greatest lower bound for a set S is often written as inf S, the infimum of S.
 - (b) Show that $\inf S = -\sup(-S)$.
- 6. A map $f : \mathbb{Q} \to \mathbb{Q}$ is called an *additive homomorphism* if it satisfies

$$f(a+b) = f(a) + f(b)$$

What are all the additive homomorphisms from \mathbb{Q} to \mathbb{Q} ?

7. Does there exist a finite ordered field?