Bowdoin College

Math 2603: Introduction to Analysis

Prof. Thomas Pietraho
FALL, 2022

Homework 2

1. Define the set of real numbers

$$
\mathbb{Q}[\sqrt{2}]=\{a+b \sqrt{2} \mid a, b \in \mathbb{Q}\}
$$

Show that together with the usual addition and multiplication, $(\mathbb{Q}[\sqrt{2}],+, \cdot)$ forms a field. You may freely use that fact that $(\mathbb{Q},+, \cdot)$ and $(\mathbb{R},+, \cdot)$ are fields.
2. Suppose that $(F,+, \cdot)$ is a field and x, y, and z are elements of F. Show that
(a) If $x \neq 0$ and $x y=x z$, then $y=z$.
(b) If $x \neq 0$ and $x y=x$, then $y=1$.
3. Suppose that $(F,+, \cdot)$ is an ordered field with $x, y \in F$. Show that
(a) If $x<y$ then $-y<-x$.
(b) $1>0$.
4. Can the set of complex numbers \mathbb{C} form and ordered field?

Hint: Consider the relationship between i and 0 .
5. Consider a set $S \subset \mathbb{R}$ and suppose that it has a lower bound. Define the set $-S$ as $\{-r \mid r \in S\}$.
(a) Define precisely the notion of a greatest lower bound for a set S and explain why one exists if S has a lower bound. The greatest lower bound for a set S is often written as $\inf S$, the infimum of S.
(b) Show that $\inf S=-\sup (-S)$.
6. A map $f: \mathbb{Q} \rightarrow \mathbb{Q}$ is called an additive homomorphism if it satisfies

$$
f(a+b)=f(a)+f(b)
$$

What are all the additive homomorphisms from \mathbb{Q} to \mathbb{Q} ?
7. Does there exist a finite ordered field?

