BOWDOIN COLLEGE

Math 2603: Introduction to Analysis Prof. Thomas Pietraho Fall, 2022

Homework 10

- 1. Prove that every uniformly continuous function $f: S_1 \to S_2$ is continuous at every point $x_0 \in S_1$.
- 2. Consider a function $f: S_1 \to S_2$. If f is uniformly continuous and $\{s_n\}$ is a Cauchy sequence of points in S_1 , then the sequence $\{f(s_n)\}$ in S_2 is Cauchy as well. Show that this result is not true in general if f is only assumed to be continuous.
- 3. It is possible to show that the subsets (0, 1) and [0, 1] of \mathbb{R} are equinumerous, that is, there is a bijection between them.
 - (a) Does there exist a continuous bijection $f: [0,1] \to (0,1)$? Remember that [0,1] is compact.
 - (b) Show that a bijection $f: (0,1) \to [0,1]$ cannot be continuous. **Hint:** Use the Intermediate Value Theorem.
- 4. Consider $\lim_{x\to 0} x \sin(\frac{1}{x})$. It seems very reasonable that this limit should equal zero: x itself approaches zero and $\sin(\frac{1}{x})$ is always between negative one and one, so their product should also approach zero. While this is great intuition, it is not much of a proof. Use the formal $\epsilon \cdot \delta$ definition to show that indeed

$$\lim_{x \to 0} x \sin(\frac{1}{x}) = 0.$$