Introduction to Introduction to Analysis

Thomas Pietraho

Bowdoin College

Main Themes:

Fundamentally, analysis is concerned with two things:

- approximation, and
- onvergence.

They are very closely related.

Example 1: Real Numbers

Consider the sequence

$$\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots$$

If we graph its points, it is clear visually that the elements approach 1.

But convergence is a phenomenon that can be studied for other mathematical objects.

Consider the sequence of Taylor polynomials centered at x = 0.5 approximating the function $f(x) = \sin x$.

-6 -4 -4

n = 0

4 / 13

Consider the sequence of Taylor polynomials centered at x = 0.5 approximating the function $f(x) = \sin x$.

n = 2

Consider the sequence of Taylor polynomials centered at x = 0.5 approximating the function $f(x) = \sin x$.

-6 _4 -4

n=6

Consider the sequence of Taylor polynomials centered at x = 0.5 approximating the function $f(x) = \sin x$.

-6 _4 -4

n=8

Consider the sequence of Taylor polynomials centered at x = 0.5 approximating the function $f(x) = \sin x$.

-6 -4 -4

n = 11

Or, for something more exotic, consider the sequence of Fourier trigonometric polynomials approximating the step function $f(x) = \operatorname{sgn} x$.

1.0 0.5

n = 1

Or, for something more exotic, consider the sequence of Fourier trigonometric polynomials approximating the step function $f(x) = \operatorname{sgn} x$.

0.5

n = 4

Or, for something more exotic, consider the sequence of Fourier trigonometric polynomials approximating the step function $f(x) = \operatorname{sgn} x$.

0.5

n = 6

Or, for something more exotic, consider the sequence of Fourier trigonometric polynomials approximating the step function $f(x) = \operatorname{sgn} x$.

0.5

n = 10

Or, for something more exotic, consider the sequence of Fourier trigonometric polynomials approximating the step function $f(x) = \operatorname{sgn} x$.

0.5

n = 20

Or, for something more exotic, consider the sequence of Fourier trigonometric polynomials approximating the step function $f(x) = \operatorname{sgn} x$.

0.5 -0.5

n = 50

Example 4: Matrix Approximations

The matrix on the left is an approximation of the matrix on the right:

Example 5: Machine Learning

Machine learning works by:

- proposing an initial model M₀, and
- a way of refining the model M_k into model M_{k+1} .

Question: Does the sequence of models stabilize?

Note: Training a model often takes several weeks on many CPU or GPUs. It would be nice to know ahead of time that this process will converge.

Image: Dmitri Petrov

Fréchet (1906): The notions of convergence and approximation can be studied independent of the setting!

This will be the approach of our course. It is the reason analysis is ubiquitous in mathematics.

Application 1: Formalization of Calculus

Convergence and approximation are the basis of calculus. Its methods were in use for centuries, sometimes with surprisingly incorrect results.

Goal: Make calculus precise.

Application 2: Compression

Idea: Find a sequence of "simple" objects which converge to the object we want to approximate, and truncate.

Suppose that we used the Fourier series to approximate the *sign* function:

$$f(x) \approx \frac{1}{2} + \frac{2}{\pi} \sin x + \frac{2}{3\pi} \sin 3x + \frac{2}{5\pi} \sin 5x + \dots$$

As before, the first few terms get us:

n = 10

$$\left(\frac{1}{2}, \frac{2}{\pi}, \frac{2}{3\pi}, \frac{2}{5\pi}, \dots, \frac{2}{19\pi}\right).$$

Application 3: Building models

Theorem: Under certain circumstances, a sequence of continuous functions is known to converge to another continuous function.

Application 3: Building models

Theorem: Under certain circumstances, a sequence of continuous functions is known to converge to another continuous function.

Note: Using this result N. Wiener constructed a model for the price for equities that is a continuous function.

Application 4: A new method of proof

Suppose that you would like to know that G has some property, but you can't prove it. But you know that you can approximate G by a sequence:

 $G_1, G_2, \ldots, G_n, \ldots$

and the G_n are easier to deal with. The following is a powerful technique of proof:

Idea: Find a *simple* sequence that converges to G. Prove that each of the G_n have this property, and then conclude that G must also have this property.

Application 4: A new method of proof

Suppose that you would like to know that G has some property, but you can't prove it. But you know that you can approximate G by a sequence:

 $G_1, G_2, \ldots, G_n, \ldots$

and the G_n are easier to deal with. The following is a powerful technique of proof:

Idea: Find a *simple* sequence that converges to G. Prove that each of the G_n have this property, and then conclude that G must also have this property.

Note: Lots of details missing.

First Things First

Problem: Decide what it should mean for a sequence of objects to "converge?"

First Things First

Problem: Decide what it should mean for a sequence of objects to "converge?"

The first thing we need to understand is **distance**. Following Fréchet, we'd like to do this in as much generality as we can.

