Stone-Weierstrass: post-proof analysis

Thomas Pietraho
Introduction to Analysis

Why did Weierstrass do what he did?

Why did Weierstrass do what he did?
How did he know how to do it?

Why did Weierstrass do what he did?
How did he know how to do it?
Can one do it better?

Why did Weierstrass do what he did?
How did he know how to do it?
Can one do it better?

First let's examine:

$$
Q_{n}(x)=c_{n}\left(1-x^{2}\right)^{n} .
$$

A new definition

Recall: For a continuous function f, we defined

$$
P_{n}(x)=\int_{-1}^{1} f(x+t) Q_{n}(t) d t
$$

Definition: Suppose that f and g are continuous. Define a new function $f * g$ by

$$
(f * g)(x)=\int_{-1}^{1} f(x+t) g(t) d t
$$

This is the convolution of f and g.

In this language, $P_{n}=f * Q_{n}$, and Q_{n} is the kernel of the convolution. Ultimately, we showed that $P_{n} \rightarrow f$.

A sequence of functions

$$
Q_{n}(x)=c_{n}\left(1-x^{2}\right)^{n}
$$

A sequence of functions

$$
Q_{n}(x)=c_{n}\left(1-x^{2}\right)^{n}
$$

We used three properties of Q_{n} :

1. each $\int_{-1}^{1} Q_{n}=1$
2. each Q_{n} is eventually small outside every interval $[-\delta, \delta]$
3. each Q_{n} is a polynomial.

We proved that $P_{n} \rightarrow f$ using (1) and (2). Item (3) allowed us to conclude that each P_{n} is a polynomial. There are many more sequences of functions that satisfy (1) and (2).

Another sequence of functions

$$
A_{n}(x)=\frac{n}{2} \cdot \chi_{\left[-\frac{1}{n}, \frac{1}{n}\right]}
$$

Another sequence of functions

$$
A_{n}(x)=\frac{n}{2} \cdot \chi_{\left[-\frac{1}{n}, \frac{1}{n}\right]}
$$

Another sequence of functions

$$
A_{n}(x)=\frac{n}{2} \cdot \chi_{\left[-\frac{1}{n}, \frac{1}{n}\right]}
$$

Another sequence of functions

$$
A_{n}(x)=\frac{n}{2} \cdot \chi_{\left[-\frac{1}{n}, \frac{1}{n}\right]}
$$

Another sequence of functions

$$
A_{n}(x)=\frac{n}{2} \cdot \chi_{\left[-\frac{1}{n}, \frac{1}{n}\right]}
$$

Another sequence of functions

$$
A_{n}(x)=\frac{n}{2} \cdot \chi_{\left[-\frac{1}{n}, \frac{1}{n}\right]}
$$

Another sequence of functions

$$
A_{n}(x)=\frac{n}{2} \cdot \chi_{\left[-\frac{1}{n}, \frac{1}{n}\right]}
$$

Another sequence of functions

$$
A_{n}(x)=\frac{n}{2} \cdot \chi_{\left[-\frac{1}{n}, \frac{1}{n}\right]}
$$

And another sequence of functions

$$
B_{n}(x) \text { as below }
$$

And another sequence of functions

$$
B_{n}(x) \text { as below }
$$

And another sequence of functions

$$
B_{n}(x) \text { as below }
$$

And another sequence of functions

$$
B_{n}(x) \text { as below }
$$

And another sequence of functions

$$
B_{n}(x) \text { as below }
$$

And another sequence of functions

$$
B_{n}(x) \text { as below }
$$

And another sequence of functions

$$
B_{n}(x) \text { as below }
$$

And another sequence of functions

$$
B_{n}(x) \text { as below }
$$

And another sequence of functions

$$
C_{n}(x) \text { a Gaussian }
$$

And another sequence of functions

$$
C_{n}(x) \text { a Gaussian }
$$

And another sequence of functions

$$
C_{n}(x) \text { a Gaussian }
$$

And another sequence of functions

$$
C_{n}(x) \text { a Gaussian }
$$

And another sequence of functions

$$
C_{n}(x) \text { a Gaussian }
$$

And another sequence of functions

$$
C_{n}(x) \text { a Gaussian }
$$

And another sequence of functions

$$
C_{n}(x) \text { a Gaussian }
$$

And another sequence of functions

$$
C_{n}(x) \text { a Gaussian }
$$

Meaning

The kernels A_{n}, B_{n}, C_{n}, and Q_{n} all satisfy properties (1) and (2):

1. each $\int_{-1}^{1} Q_{n}=1$
2. each Q_{n} is eventually small outside every interval $[-\delta, \delta]$

Let's focus on the A_{n} :

$$
\begin{aligned}
f * A_{n}(x) & =\int_{-1}^{1} f(x+t) A_{n}(t) d t=\int_{-\frac{1}{n}}^{\frac{1}{n}} f(x+t) \cdot \frac{n}{2} d t \\
& =\frac{1}{\left(\frac{2}{n}\right)} \int_{-\frac{1}{n}}^{\frac{1}{n}} f(x+t) d t=\frac{1}{\left(\frac{2}{n}\right)} \int_{x-\frac{1}{n}}^{x+\frac{1}{n}} f(s) d s
\end{aligned}
$$

This is just the average value of f on the interval $\left[x-\frac{1}{n}, x+\frac{1}{n}\right]$!

Meaning

The kernels A_{n}, B_{n}, C_{n}, and Q_{n} all satisfy properties (1) and (2):

1. each $\int_{-1}^{1} Q_{n}=1$
2. each Q_{n} is eventually small outside every interval $[-\delta, \delta]$

Let's focus on the A_{n} :

$$
\begin{aligned}
f * A_{n}(x)=\int_{-1}^{1} f(x+t) A_{n}(t) d t= & \\
& \frac{1}{\left(\frac{2}{n}\right)} \int_{x-\frac{1}{n}}^{x+\frac{1}{n}} f(s) d s
\end{aligned}
$$

This is just the average value of f on the interval $\left[x-\frac{1}{n}, x+\frac{1}{n}\right]$!

Meaning

The kernels A_{n}, B_{n}, C_{n}, and Q_{n} all satisfy properties (1) and (2):

1. each $\int_{-1}^{1} Q_{n}=1$
2. each Q_{n} is eventually small outside every interval $[-\delta, \delta]$

Let's focus on the A_{n} :

$$
\begin{aligned}
f * A_{n}(x) & =\int_{-1}^{1} f(x+t) A_{n}(t) d t=\int_{-\frac{1}{n}}^{\frac{1}{n}} f(x+t) \cdot \frac{n}{2} d t \\
& =\frac{1}{\left(\frac{2}{n}\right)} \int_{-\frac{1}{n}}^{\frac{1}{n}} f(x+t) d t=\frac{1}{\left(\frac{2}{n}\right)} \int_{x-\frac{1}{n}}^{x+\frac{1}{n}} f(s) d s
\end{aligned}
$$

This is just the average value of f on the interval $\left[x-\frac{1}{n}, x+\frac{1}{n}\right]$!

Meaning

$f * A_{n}$ is the average value of f on the interval $\left[x-\frac{1}{n}, x+\frac{1}{n}\right]$!
$f * A_{n}$ is a smoothed version of the function f.

It is not surprising that $P_{n}=f * A_{n} \rightarrow f$. As n grows, the average is taken over smaller intervals.

In general:
$f * g$ is a weighted average of f around x, where the function g determines the nature of the weighting.
$f * K_{n} \rightarrow f$ if K_{n} satisfies (1) and (2).

How well does this work?

$$
\begin{gathered}
f(x)=\cos (3 x) * \sin (10 * x) \\
P_{n}(x)=f * Q_{n}
\end{gathered}
$$

How well does this work?

$$
\begin{gathered}
f(x)=\cos (3 x) * \sin (10 * x) \\
P_{n}(x)=f * Q_{n}
\end{gathered}
$$

How well does this work?

$$
\begin{gathered}
f(x)=\cos (3 x) * \sin (10 * x) \\
P_{n}(x)=f * Q_{n}
\end{gathered}
$$

How well does this work?

$$
\begin{gathered}
f(x)=\cos (3 x) * \sin (10 * x) \\
P_{n}(x)=f * Q_{n}
\end{gathered}
$$

How well does this work?

$$
\begin{gathered}
f(x)=\cos (3 x) * \sin (10 * x) \\
P_{n}(x)=f * Q_{n}
\end{gathered}
$$

How well does this work?

$$
\begin{gathered}
f(x)=\cos (3 x) * \sin (10 * x) \\
P_{n}(x)=f * Q_{n}
\end{gathered}
$$

How well does this work?

$$
\begin{gathered}
f(x)=\cos (3 x) * \sin (10 * x) \\
P_{n}(x)=f * Q_{n}
\end{gathered}
$$

How well does this work?

$$
\begin{gathered}
f(x)=\cos (3 x) * \sin (10 * x) \\
P_{n}(x)=f * Q_{n}
\end{gathered}
$$

How well does this work?

$$
\begin{gathered}
f(x)=\cos (3 x) * \sin (10 * x) \\
P_{n}(x)=f * Q_{n}
\end{gathered}
$$

How well does this work?

$$
\begin{gathered}
f(x)=\cos (3 x) * \sin (10 * x) \\
P_{n}(x)=f * Q_{n}
\end{gathered}
$$

Problems

Find polynomial kernels R_{n} that give a faster rate of convergence for $f * R_{n} \rightarrow f$.

Find polynomial kernels R_{n} that give a faster rate of convergence for $f * R_{n} \rightarrow f$.

Given a family of functions f, find kernels K_{n} for which convergence $f * K_{n} \rightarrow f$ is fast and the functions $f * K_{n}$ are simple from the perspective of the problem you are studying.

