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A new definition

Recall: For a continuous function f , we defined

Pn(x) =

∫ 1

−1
f (x + t)Qn(t) dt.

Definition: Suppose that f and g are continuous. Define a

new function f ∗ g by

(f ∗ g)(x) =

∫ 1

−1
f (x + t)g(t) dt.

This is the convolution of f and g .

In this language, Pn = f ∗ Qn, and Qn is the kernel of the

convolution. Ultimately, we showed that Pn → f .
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A sequence of functions

Qn(x) = cn(1− x2)n

We used three properties of Qn :

1. each
∫ 1
−1Qn = 1

2. each Qn is eventually small outside every interval [−δ, δ]

3. each Qn is a polynomial.

We proved that Pn → f using (1) and (2). Item (3) allowed us to

conclude that each Pn is a polynomial. There are many more

sequences of functions that satisfy (1) and (2).
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Meaning

The kernels An, Bn, Cn, and Qn all satisfy properties (1) and (2):

1. each
∫ 1
−1Qn = 1

2. each Qn is eventually small outside every interval [−δ, δ]

Let’s focus on the An:

f ∗ An(x) =

∫ 1

−1
f (x + t)An(t) dt =

∫ 1
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f (x + t) · n2 dt

=
1(
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1(
2
n

) ∫ x+ 1
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x− 1
n

f (s) ds

This is just the average value of f on the interval [x − 1
n , x + 1

n ]!
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Meaning

f ∗ An is the average value of f on the interval [x − 1
n , x + 1

n ]!

f ∗ An is a smoothed version of the function f .

It is not surprising that Pn = f ∗ An → f . As n grows, the average

is taken over smaller intervals.

In general:

f ∗g is a weighted average of f around x , where the function

g determines the nature of the weighting.

f ∗ Kn → f if Kn satisfies (1) and (2).
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Problems

Find polynomial kernels Rn that give a faster rate of conver-

gence for f ∗ Rn → f .

Given a family of functions f , find kernels Kn for which con-

vergence f ∗ Kn → f is fast and the functions f ∗ Kn are

simple from the perspective of the problem you are studying.
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