
Sean Barker

Client-Server Architecture

1

2/11/14

2

Client-Server"
Client"

Client"

Client"

Client"Client"

Server"

request"

request"

re
qu

es
t"

request"

request"

reply"

reply"

re
ply
"

reply"

reply"

Clients and Servers"
•  Server tasks ""

•  Listen, accept, receive, send, loop"

•  Client tasks"
•  Connect, request, receive, close"
"

Implementing a Server"

•  How do we create the network connections?"
•  Sockets!"
•  Java uses ServerSockets (and Sockets for clients)"
•  C/C++ makes no distinction between client and

server connections"

•  How does the server support multiple clients
at once?"
•  Using multiple threads or processes"
•  Using an event queue"

File Descriptors"

•  File descriptors"
•  Most I/O on Unix systems take place through read and

write system calls"
•  Read and write operations are performed on file

descriptors"
•  Non-negative integers that are created using system calls (like

open(), socket(), accept()) "
•  They remain bound to files/sockets even when they are renamed

or deleted"

•  Popular file descriptors"
•  0 = stdin, 1 = stdout, 2 = stderr"

File I/O"

•  System calls for file I/O:"
•  int open(char *path, int flags, …)
•  int read(int fd, void *buf, int nbytes)
•  int write(int fd, void *buf, int nbytes)"

•  Example using files "
•  Read from “a.txt” and write to stdout"

" "

Introduction to Sockets"
•  Sockets are like file descriptors for network connections "
•  Create new sockets using socket()"

•  Just like open() for files"
•  int socket(int domain, int type, int protocol)"

•  For TCP over IP"
•  domain = AF_INET
•  type = SOCK_STREAM
•  protocol = 0, or IPPROTO_TCP"

•  But unlike files, sockets require more info to be
functional"
•  They need an IP address and port"

Sean Barker

File I/O

int open(char* path, int flags, ...)

 int read(int fd, void* buf, int nbytes)

 int write(int fd, void* buf, int nbytes)

 int close(int fd)

2

Sean Barker

Socket I/O: socket

int socket(int domain, int type,
 int protocol)

• domain = AF_INET
• type = SOCK_STREAM
• protocol = 0 (or IPPROTO_TCP)

3

Sean Barker

Socket I/O: bind

int bind(int sock, struct sockaddr* addr,
 int addrlen)

• sock = socket file descriptor
• addr: see below
• addrlen = sizeof(addr)

struct sockaddr_in {
 short sin_family; // --> AF_INET
 u_short sin_port; // --> htons(portnum)
 struct in_addr sin_addr;
 // --> .s_addr = htonl(INADDR_ANY)
}

4

Sean Barker

Socket I/O: listen

int listen(int sock, int backlog)

• sock = socket file descriptor
• backlog = max # of unaccepted
connections (e.g. 10)

5

Sean Barker

Socket I/O: accept

int accept(int sock, struct sockaddr* addr,
 int* addrlenp)

• sock = listening socket
• addr gets filled in with client info
• addrlen = pointer to sizeof(struct
sockaddr_in)

6

Blocking call!

Sean Barker

Socket I/O: send/recv

int send(int sock, char* msg, int msglen,
 int flags)

int recv(int sock, char* msg, int msglen,
 int flags)

7

Sean Barker

Client-Server Architecture

8

2/11/14

2

Client-Server"
Client"

Client"

Client"

Client"Client"

Server"

request"

request"

re
qu

es
t"

request"

request"

reply"

reply"

re
ply
"

reply"

reply"

Clients and Servers"
•  Server tasks ""

•  Listen, accept, receive, send, loop"

•  Client tasks"
•  Connect, request, receive, close"
"

Implementing a Server"

•  How do we create the network connections?"
•  Sockets!"
•  Java uses ServerSockets (and Sockets for clients)"
•  C/C++ makes no distinction between client and

server connections"

•  How does the server support multiple clients
at once?"
•  Using multiple threads or processes"
•  Using an event queue"

File Descriptors"

•  File descriptors"
•  Most I/O on Unix systems take place through read and

write system calls"
•  Read and write operations are performed on file

descriptors"
•  Non-negative integers that are created using system calls (like

open(), socket(), accept()) "
•  They remain bound to files/sockets even when they are renamed

or deleted"

•  Popular file descriptors"
•  0 = stdin, 1 = stdout, 2 = stderr"

File I/O"

•  System calls for file I/O:"
•  int open(char *path, int flags, …)
•  int read(int fd, void *buf, int nbytes)
•  int write(int fd, void *buf, int nbytes)"

•  Example using files "
•  Read from “a.txt” and write to stdout"

" "

Introduction to Sockets"
•  Sockets are like file descriptors for network connections "
•  Create new sockets using socket()"

•  Just like open() for files"
•  int socket(int domain, int type, int protocol)"

•  For TCP over IP"
•  domain = AF_INET
•  type = SOCK_STREAM
•  protocol = 0, or IPPROTO_TCP"

•  But unlike files, sockets require more info to be
functional"
•  They need an IP address and port"

Sean Barker

Processes and Threads

9

Sean Barker

Creating Processes and Threads

§ Processes:
•int fork()

§ Threads:
int pthread_create(pthread_t* thr,

const pthread_attr_t* attr,
void* (*start_routine)(void*),
void* arg)

attr: usually NULL
start_routine: function to execute
arg: argument to function

10

