Distributed Coordination

Voting Set Example

V ₀ =	{0, 1, 2}
V ₁ =	{1, 3, 5}
$V_2 =$	{2, 4, 5}
V ₃ =	{0, 3, 4}
V ₄ =	{1, 4, 6}
V ₅ =	{0, 5, 6}
V ₆ =	{2, 3, 6}

Bowdoin

Sean Barker

Bully Algorithm

Ring-based Election

- · Processes have unique Ids and arranged in a logical ring
 - Each process knows its neighbors
 Select process with highest ID

•

- · Begin election if just recovered or coordinator has failed
- Send *Election* to closest downstream node that is alive
 - Sequentially poll each successor until a live node is found
- Each process tags its ID on the message
- · Initiator picks node with highest ID and sends a coordinator message
- Multiple elections can be in progress
 - Wastes network bandwidth but does no harm