An Introduction To Range Searching

Jan Vahrenhold

Department of Computer Science
Westfalische Wilhelms-Universitat Miinster, Germany.

I

Introduction: Problem Statement, Lower Bounds
Range Searching in 1 and 1.5 Dimensions
Range Searching in 2 Dimensions

Summary and Outlook

Given: Collection S of n points in d dimensions (S C]Rd)

Wanted: Algorithm for efficiently reporting all k points in S falling
into a given axis-parallel query range D C R,

Applications: Geographic Information Systems; Databases having
relations in which the keys can be totally ordered.

i B eV qmeuuicuw f
righam City .Rock Springs Saratoga | A
,‘ .Ogden I Green ig® . Eg py, Lgramie Pine B\.u«s Gehalt
! —— @CHEYENNE_ _ —
SALT LAK _________________ Haxt
,l @ ECITY \/e Mx Zirkel o Walden R Cons Sterl i ax 0”" 100.000 4 \
] elpy
| .P Ducnesne .:uosevelll gl ramy Estes P ® Akron Vuma * Mayer
h 'Payson oMesker Boulder
1 oNeohi piice 7 : Al i DENVER o L“'C".a"i;e
I oDelta] B ®Dillon
lenw us Flagler .
1 U];‘A H b°'H grand/.luncnon .?\Ospe:{ Lm.an. M * Maier
] e eSaina Hugo .
: Eisinore® | o g \o‘ ; o 0 ORAD|O inca = Meier
h S T Colorado Spnngs‘ i foca -
i L=
! i “SPlkblo Lamay 35.000 +— | | Eintrittsdatum
Codar City ~ oPanguicn e wison @2V d
‘ ' 4 GSilverton Del Nort 1990
' 1° Dave Creek® ~— ~—e. { lorte QNeiserpurg spr
@ Springdale lConez] M 1985
i- SiGeorge _ _ _ | oDUrango Alamosg \ STipidad / \
e e il el kN ke
/'Page Kayenza ¢ snfmk Azlec o Tiera ;}’nan!\a ohalon | >
anmi ington Wheeler Pk 1 oy N
J\ °%3 Cayygn o Teba Ciy i) ! Ma Me Name

m Assume that S = {pg,...,pn_1} is stored in an array.

m Scan though the array and test for each p; whether p;, € D.

pO pl p2 p3 p4 p5 pG p7 p8 p9 plO

m Need to scan the whole array, regardless of how many points are
reported. Complexity: © (n) time and space.

Change the model to also include k (the number of points re-
ported) as a parameter.

— Algorithm on previous slide has complexity O (n 4+ k) = O (n).

Time complexity: preprocessing time < query time

Can disregard preprocessing time for many applications
(one-time operation).

Query time composed of two components:

— Search time: Time to locate the first element to be reported.
— Retrieval time: Time to fetch and report all k£ elements to be reported.

Space requirement (lower bound for preprocessing time).

Parameters: n points, k points reported, d dimensions.

Space requirement: Q2 (n).

Retrieval time: Q (k).

Search time: Using binary decision tree (— sorting lower bound).

Lower bound construction:

— (n =) 2ad points, each with exactly
one unique non-zero integer coor-
dinate taken from [—a,a] \ {O}.

- D = [bl,...,bd] X [01,...,Cd], with
bi € [—a,—1], ¢; € [1,a], 1 <i<d.

— Query ranges not-empty, each pro-
duces a different answer.

— Overall: a2¢ = (n/(2d))** different
answers.

— Depth of decision tree: Q2 (Iog (n/(2d))2d> =Q(d-logn).

— Lower bound not tight for all d.

2. Range Searching in 1 and 1.5 Dimensions
3. Range Searching in 2 Dimensions

4. Summary and Outlook

m Point set S = {pg,...,pn_1} C IR, stored in an array.
m Query range D = [z, z5].
m Scanning is sub-optimal; lower bound: Q2(1-logon + k).

Preprocessing:
m Sort the points, e.g., using heapsort in O (nlogpn) time.

—O0—O0—0—10—0—0—0—0—01-0—0—»

Po | P1 | P2 [Ps |Ps |Ps | Ps | P7 | Ps |Ps | Pio

Query: Binary search for smallest p; > z1. .. O (logon)

...scan forward until first p; < x> (or end of array). O(k+1)

°p,
(@)
Po °p, °p, %P,
o °p,
°p, - °p,
°p,

Po |P1 | P2 |Ps [Ps|Ps |Ps | P |Ps | Py | Pio

m There is no total order on points in two dimensions sorting ac-
cording to which guarantees © (2-logpo n + k) query time for range
searching.

Key ingredient: binary search (bisection).

Replace (sorted) array by binary search tree.

Time Complexity:

— Preprocessing time: O (nlogn)
— Query time: O (logn + k)

Space Complexity: O (n).

InsertS/DeleteS possible.

Given: Point set S = {pg,...,pn_1} C RZ?,
stored in an array. °

Wanted: Method to efficiently retrieve all
p € S that, for given (x1,z2,y), fall into ° .
[xla:EQ] X]—OO,y].

Look at two subproblems:

m Report all points in [z1,25] X IR using,
e.g., a threaded binary search tree.

m Report all points in R x] — oo, y] using,

e.g., a heap: O

— Almost complete binary tree. e e

— key(v) < min{key(LSON(v)), key(RSON(v))}. (1) @ @ 9
@)

Binary search tree with heap property:
m Binary search tree unique w.r.t. inorder-traversal.
m No (direct) way of incorporating heap property.
Heap with search tree property:

m Heap not unique.

m More precisely: Children of a node may be switched.

Priority Search Tree:
m Binary tree H storing a two-dimensional point at each node s.t.
the heap property w.r.t. the y-coordinates is fulfilled.

m Additional requirement: Vo € H : dzy € IR :
| <zy<r VI € LSUBTREE(v), Vr € RSUBTREE(v).

Use recursive definition [McCreight, 1985]:

Build priority search tree H(S) for a given set S of points in the
plane. Assume w.l.0.g. that all coordinates are pairwise distinct.

If S =, construct H(S) as an (empty) leaf.
Else let pmin be the point in § having the minimum y-coordinate.
Let zmig be the median of the xz-coordinates in S\ {pmin}-

Partition S\ {pmin}:

Sieft ‘= {p € S\ {Pmin} | P-z < Tmig}
Sright ‘= {p € S\ {Pmin} | P-T > Tmiq}

Construct search tree node v storing xmig and set p(v) := pmin-
Recursively compute v's children H(Sjert) and H(Syignt)-

Complexity: O (n) space; O (nlogn) time (why?).

Query range [z, x3] X [—o0,y]:

SearchInSubtree(v,y)

if v not a leaf and p(v).y <y then

Queries for x1 and xo result in two search
paths in H.

Check all points on these paths.

All subtrees “embraced” by these paths con- X
tain points in [z1,722] X R.

Query these subtrees a follows:

Report p(v);
SearchInSubtree(LSON(v),y);
SearchInSubtree(RSON(v),y);

Query time: O (1 + k). Example for y = 5.

Missing Components:

m A more detailed description of the
query algorithm. = [de Berg et al., 2000]

m Proof of correctness.

Theorem 2.1
Priority search trees allow for answering three-sided range queries on
points in R2 with time and space complexities as follows:

Preprocessing time: © (nlogn)
Query time: O (logn + k)

Space requirement: © (n)

3. Range Searching in 2 Dimensions

4. Summary and Outlook

Extend the concept of binary search by bisection to higher dimen-
sions.

Instead of intervals, partition (hyper-)rectangles; do the partition-
ing alternating parallel to the coordinate axes.

R; is partitioned into R; and Ry = |Rj| ~ |Ry,| ~ 5|R|.

Structure corresponding to partitioning: balanced binary tree
(kD-tree [Bentley, 1975]).

Node v corresponds to hyperrectangle R(v), R(root) = R%:
children correspond to sub-hyperrectangles.

Each node v is augmented to store:
— S(v): points contained in R(v) (implicitly).

— [{(v): representation of split axis.
— P(v): median of S(v) w.r.t. £(v).

54
P4 pp p9o_._
B - Py P P
Ps
PP o lplP
E ./ S ./ S ./ S ./ N

Alternating partitioning along the coordinate axes.

void search(node v, rectangle D, list(point)& result)

P
double left, median, right; D 6# Pod
if v.type == *vertical’ then Pre P, —o—
left = D.x1; right = D.x2; o | P
. 3
median = v.P.x; &
else
left = D.yl; right = D.y2;

median = v.P.y;

if left < median < right and
D.contains(v.P) then
result.append(v.P);

if lisLeaf(v) then
if left < median then
search(leftSon(v), D, result);
if median < right then
search(rightSon(v), D, result);

return;

Space requirement:
m pe R(v) «<— p=P(v)Vpe R(q) for any descendant ¢g of v.

m O (1) space requirement per node, exactly one point stored at
each node = O (n) overall space requirement.

Construction time (preprocessing):

m Linear-time median finding per partitioning step, i.e., recurrence:
T(n)=2-T(n/2])+0(n) € O(n-logn)

m Alternative: Replace median-finding by pre-sorting (copies of) the
point by their z- and y-coordinates, respectively.

— Can find median w.r.t. z-coordinate in O (1) time.
— Can construct sorted y-arrays to be passed to the children in linear time.

m Query time proportional to number of nodes visited.

= v productive <= P(v) € D. D
D
m Nodes visited: productive and [[jD
unproductive nodes. R(v) R(v) R(v)
Type O Type 1 Type 2

Definition 3.1
Let R(v) be a rectangle and let 0 < D D
i < 4. D and R(v) form a type- RW)
¢ situation <= ¢ sides of R(v) RW)
intersect the interior of D. Type 3 Type 4

m Type-4 situation always productive, all other situations may be
unproductive.

C
H—o—
4ﬁF—l— T'(h-2) | T(h-2)
> T'(h-3)

m Recurrence for worst-case query time:

Th)y=21+1+1 +T(h-2)+T'(h—-2)+ 1 +T'(h—3)
T T T 5 F T h

m A closer look at situation “subtree rooted at node D'".

A
D /

.E X Y A

oG

B
®A h
o D8V .
H *—
F | /
> T'(h-2) T'(h-2)

m Recurrence for this situation:

T =L+ L+L+ 27T(h-2)
D X Y Children of X and Y

= The following recurrence holds for T'(h): X Y

T'(h) = 2-T"(h—-2)+3 h

with 7/(0) = 0 and T'(1) = 1.

T'(h-2) T'(h-2)

= Solve recurrence for T'(h), w.l.o.g. h =214, i € N,
T'<2-z’> = 3—|—2-T’<2(7j— 1))

= 3+2-(3+2-7'(2(-2)))
= 253-2-7' = 3.20-3
j=0

Similarly: T/(2-i+1) = 4.2t — 3.

= The following recurrence holds for T'(h):
T(h) = T(h-2)+T(h—-2)+T'(h—3)+4

4.2 -3 forh=2-i+1
3.20-3 forh=2-1

T'(h) = {

T'h-2) 1t T(h2)
with T(0) = T’(O) =0and 7T(1) = T’(l) = 1. T'(h-3)

m Solve recurrence for T'(h), w.l.o.g. h =2 -4, i € IN.
T<2-7L> = 4+T(2(z'—1))+3-2i—1—3+4-2i—2—3
= T(2(¢-1))+5.2i—1—2
= 5-(2"2-1)-h

Similarly: T(2-i+1)=7" (2W2J — 1) —h+2.

Overall (for n < 2P —1): T(n) € © (2 : n1/2>.

Worst-case query time independent of the number of points re-
ported.

kD-tree very relevant in practice!

Extension to higher dimensions (points in]Rd): Do partitioning
in @ round-robin manner of the coordinate axes 1 — o — ... —
LTg —> L1 — -

Theorem 3.2

Multidimensional search trees (kD-trees) allow for answering four-
sided range queries on points in]Rd,d > 2 with time and space com-
plexities as follows:

Preprocessing time: © (d-nlogn)
Query time: O(d-nl—l/d+k>

Space requirement: © (n)

4. Summary and Outlook

Lower bounds:
m Q(d-logon+ k) time, 2 (n) space.

Results:

m One dimension: optimal O (logyn + k) algorithm, © (n) space.
m 1.5 dimensions: optimal O (logpyn + k) algorithm, © (n) space.
= Two dimensions: sub-optimal O (y/n + k) algorithm, © (n) space.

= d dimensions: sub-optimal O (n1=1/4 4 k) algorithm, © (n) space.

Outlook:

m Optimal query time possible of one is willing to spend superlinear
space [Chazelle, 1990]. Beware: choosing the adequate model of
computation is crucial.

Bibliography

[Bentley & Maurer, 1980] J. L. Bentley and H. A. Maurer. Efficient worst-case
data structures for range searching. Acta Informatica, 13:155-168, 1980.

[Bentley, 1975] J. L. Bentley. Multidimensional binary search trees used for as-
sociative searching. Communications of the ACM, 18(9):509-517, September
1975.

[Chazelle, 1990] B. M. Chazelle. Lower bounds for orthogonal range searching.
I. The reporting case. Journal of the ACM, 37(2):200—212, April 1990.

[de Berg et al., 2000] M. de Berg, M. J. van Kreveld, M. H. Overmars, and
O. Schwarzkopf. Computational Geometry: Algorithms and Applications.
Springer, Berlin, second edition, 2000.

[Lee & Wong, 1977] D.-T. Lee and C. K. Wong. Worst-case analysis for region
and partial region searches in multidimensional binary search trees and balanced
quad trees. Acta Informatica, 9:23—29, 1977.

[McCreight, 1985] E. M. McCreight. Priority search trees. SIAM Journal on
Computing, 14(2):257—276, May 1985.

