Price setting in Matching Markets
Reading: Ch 11.1 of EK

Bargaining & Power in Networks
Reading: Ch. 12 of EK

Mohammad T. Irfan

Price-setting in real world
Second price/English auction
Stock market (Section 11.1)
Stock markets

- Stock exchanges - determine MCP
 - NYSE: algorithm + designated market maker (DMM)
 - NASDAQ: algorithm only
- Trading systems - match buyers & sellers
 - Direct Edge, Goldman Sachs, Investment Technologies Group (ITG)

Order book

- 1. Limit order (big traders)
 - A: sell 100 shares at >= $5/share
 - B: sell 100 shares at >= $5.5/share
 - C: buy 100 shares at <= $4/share
 - D: buy 100 shares at <= $3.5/share
Order book

- 2. Market order (small traders)
 - Buy 150 shares at market price => 100 shares at $5/share and 50 shares at $5.5/share

<table>
<thead>
<tr>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>$5.50 - ASK</td>
<td>$5.50 - ASK</td>
</tr>
<tr>
<td>$5.00</td>
<td></td>
</tr>
<tr>
<td>$4.00 - BID</td>
<td>$4.00 - BID</td>
</tr>
<tr>
<td>$3.50</td>
<td>$3.50</td>
</tr>
</tbody>
</table>

Trading large volumes of shares

- Hedge funds, insurance companies, mutual funds (Fidelity, Vanguard), banks, etc. trade in large volumes
- 1. Split the volume into small fragments - why?
- 2. Dark pool
 - Examples: Goldman Sach’s Sigma-X, ITG
 - Trade large volumes at market price without revealing identity
 - Accounts for 15% of US volume (2014)
 - Pros: Reduced impact on market, lower transaction cost
 - Cons: Lack of transparency, exchange prices may not reflect the real market, predatory trading by hedge funds
Example of matching buyers with sellers: Tradesparq

In today’s global economy, even small American businesses often turn to China and India to manufacture their products, but finding a reliable supplier across the world isn’t easy.

Tradesparq, a Shanghai-based startup, is trying to simplify the process of locating a trustworthy manufacturing partner by allowing business owners to search a directory of global suppliers and match those results against their social network, Think Alibaba meets LinkedIn.

https://www.youtube.com/watch?v=fxQ1JLh7U_c

Bargaining & Power in Economic Networks

Chapter 12
Power

- Is it an individual property?
- Or a result of social relations?
 - Richard Emerson (1962)
 - Social relation between two people produces "values" for them
 - Imbalance of values ➔ power
 - Division of values: Network exchange theory

Who is most powerful?

- B
- Why?
 - Dependence: A and C completely depend on B
 - Exclusion: B can exclude A or C from being his "best friend"
 - Satiation: B will maintain relationship only if he gets a better share
 - Betweenness: B has the highest betweenness centrality measure
Experimental Setup

Experimental results and analysis
Mathematical framework
Stable outcomes

Stable outcomes in network exchange

- Outcome = (matching, values)
- What is a stable outcome?
 - Opportunity + Incentive → unstable
- How to check for stability?
- Does a stable outcome always exist?
Stable outcomes

- Limitations of stable outcomes
 - Extreme values
 - Explanation - ultimatum game
 - Ambiguity
 - Solution - Nash bargaining

Ultimatum game

- A little dramatic here!
 - https://www.youtube.com/watch?v=BfE4ZL08twA
- Difference between real-world experimental outcomes and stable outcomes
 - Stable outcomes sometimes go to the extreme
- Explanation
 - People play a different game than the one on paper!

Nash bargaining solution
Resolves ambiguity in stable outcomes
Research results

- Computation
 - Convergence - Azar+ (2009)
 - Balanced outcome - Kleinberg+ (2008)

- Modeling
 - Cooperative game theory
 - Stable outcomes: core
 - Balanced outcomes: kernel

- Open
 - Large scale experimentation