Study of markets

- **General equilibrium theory**
 - Seeks to explain the behavior of supply, demand and prices in an economy
 - Central point of attention in mathematical economics

Background

- Formal mathematical modeling of markets
 - Leon Walras (1874)
- Competitive equilibrium
- Equilibrium pricing
 - Demand = Supply
Background

- **Good news**
 - A competitive equilibrium exists in Walrasian economy
 - Proved by Arrow and Debreu (1954)

- **Bad news**
 - Existence proof is not algorithmic

1st Welfare Theorem

- Any competitive equilibrium (Walrasian equilibrium) leads to a “pareto optimal” allocation of resources

Social justification

- Let the competitive market do the work (everybody pursuing self-interest)
- It will lead to pareto optimality (socially maximal benefit)
Timeline

1954 - 2001
- We are happy. Equilibrium exists. Why bother about computation?
- Sporadic computational results
 - Eisenberg-Gail convex program, 1959
 - Scarf’s computation of approximate fixed point, 1973
 - Nenakov-Primak convex program, 1983

Today’s markets
Electronic marketplaces

Need for algorithms

- New types of markets
 - The internet market
 - Massive computational power available
 - Need to “compute” equilibrium prices
- Effects of
 - Technological advances
 - New goods
 - Changes in the tax structure
- Deng, Papadimitriou and Safra (2002)—Complexity of finding an equilibrium; polynomial time algorithm for linear utility case
- Devanur, Papadimitriou, Saberi, Vazirani (2002) - polynomial time algorithm for Fisher’s linear case
Fisher economy

- Irving Fisher (1891)
 - Mathematical model of a market

Fisher's apparatus to compute equilibrium prices

Fisher economy

- Illustrations of various items, including milk, bread, and cheese.
Utility function

utility

amount of milk

Utility function

utility

amount of bread
Utility function

Total utility

- Total utility of a “bundle” of goods
 = Sum of the utilities of individual goods
Problem 1

- Prices given
- What would be the optimal bundle of goods for a buyer?
- Bang-per-buck (BPB)
 - Example: $u_2/p_2 > u_1/p_1 > u_3/p_3$

Fisher market – setup

- Multiple buyers, with individual budgets and utilities
- Multiple goods, fixed amount of each good
- Equilibrium/market-clearing prices
 - Each buyer maximizes utility at these prices
 - Buyers will exhaust their budgets
 - No excess demand or supply
Fisher’s linear case

- Model parameters (what’s given)
 - \(n \) divisible goods (1 unit each wlog) and \(n’ \) buyers
 - \(e_i \) = buyer \(i \)’s budget (integral wlog)
 - \(u_{ij} \) = buyer \(i \)’s utility per unit of good \(j \) (integral wlog)
 - Linear utility functions

- Want (not given): equilibrium allocations
 - \(x_{ij} \) = amount of good \(j \) that \(i \) buys to maximize

 his/her utility \(u_i(x) = \sum_{j=1}^{n} u_{ij}x_{ij} \)

 - No excess demand or supply

Dual (proof later)

- Want (not given): equilibrium/market-clearing prices
 - Prices: \(p_1, p_2, ..., p_n \)
 - After each buyer is assigned an optimal basket of goods (\(x_{ij} \)’s) w.r.t. these prices, there’s no excess demand or supply
 - \(x_{ij} \)’s at these prices: equilibrium/market-clearing allocations
Can we formulate an optimization routine?

- Does LP work?
- Anything else?

Main challenge

Optimize buyer 1's utility

Optimize buyer 2's utility

Optimize buyer n's utility

Global constraint:
\[\forall j \sum_i x_{ij} = 1 \]

Convert to a single optimization
Eisenberg-Gale Formulation of Fisher Market

Eisenberg-Gale convex program (1959)
- Equilibrium allocations captured as
 - Optimal solutions to the Eisenberg-Gale convex program
- Objective function
 - Money weighted geometric mean of buyers’ utilities

\[
\max \left(\prod_i u_i^{e_i} \right)^{\sum \epsilon_i} \iff \max \left(\prod_i u_i^{e_i} \right) \iff \max \sum_i \epsilon_i \log u_i
\]
Eisenberg-Gale convex program

maximize $\sum_i e_i \log u_i$

subject to

$u_i = \sum_j u_j x_{ij}, \forall i$

$\sum_i x_{ij} \leq 1, \forall j$

$x_{ij} \geq 0, \forall i, \forall j$

Prove: There exist market-clearing prices iff each good has an interested buyer (positive utility)

Example

2 buyers, 1 good (1 unit of milk)

Buyer 1

Budget, $e_1 = $100

$u_{11} = 10$/unit of milk

utility

amount of milk

$x^{*}_{11} = ?$

Buyer 2

Budget, $e_2 = $50

$u_{21} = 1$/unit of milk

utility

amount of milk

$x^{*}_{21} = ?$
Solution

- $x_{11} = 2/3$, $x_{21} = 1/3$

<table>
<thead>
<tr>
<th>maximize</th>
<th>function</th>
<th>$100 \log(10 , x) + 50 \log(1 - x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>domain</td>
<td>$0 \leq x \leq 1$</td>
<td></td>
</tr>
</tbody>
</table>

Why $x_{11} = 2/3$, $x_{21} = 1/3$?

Set price of milk = $150/unit
Primal-dual

- p_j = The price of good j at an equilibrium
 = Dual variable corresponding to the primal constraint for good j: $\sum_i x_{ij} \leq 1$

How to devise duals of nonlinear programs?
Review: Fisher’s linear case

- Model parameters (what’s given)
 - \(n \) divisible goods (1 unit each wlog) and \(n' \) buyers
 - \(e_i \) = buyer \(i \)'s budget (integral wlog)
 - \(u_{ij} \) = buyer \(i \)'s utility per unit of good \(j \) (integral wlog)
 - Linear utility functions

- Want: equilibrium allocations, \(x_{ij} \)
 - \(x_{ij} \) = amount of good \(j \) that \(i \) buys to maximize his/her utility \(u_i(x) = \sum_{j=1}^{n} u_{ij}x_{ij} \)
 - No excess demand or supply

- Want: equilibrium prices, \(p_j \)

Formal proof: Eisenberg-Gale solves Fisher market

\[
\begin{align*}
\text{maximize} & \quad \sum_i e_i \log u_i \\
\text{subject to} & \quad u_i = \sum_j u_{ij}x_{ij}, \forall i \\
& \quad \sum_i x_{ij} \leq 1, \forall j \\
& \quad x_{ij} \geq 0, \forall i, \forall j \\
\end{align*}
\]

- Prove: There exist market-clearing prices iff each good has an interested buyer (positive utility)
Interesting properties

- The set of equilibria is convex
- Equilibrium prices are unique!
- All entries rational => equilibrium allocations and prices rational

Flow
Max Flow & Min Cut
Ref: Ch 7 of Kleinberg-Tardos

Slides adapted from the Algorithm Design textbook slides
[Kleinberg, Tardos, K. Wayne, P. Kumar]
History: Schrijver (2002)

Big picture

- Tolstoy (1930): Find max flow
- Harris & Ross (1955): Find min cut
- Ford & Fulkerson (1956): They are the same
 - Their proof: combinatorial
 - Another proof: LP duality

Primal: max flow

Dual: min cut
Applications

<table>
<thead>
<tr>
<th>Network</th>
<th>Nodes</th>
<th>Arcs</th>
<th>Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>communication</td>
<td>telephone exchanges, computers, satellites</td>
<td>cables, fiber optics, microwave relays</td>
<td>voice, video, packets</td>
</tr>
<tr>
<td>circuits</td>
<td>gates, registers, processors</td>
<td>wires</td>
<td>current</td>
</tr>
<tr>
<td>mechanical</td>
<td>joints</td>
<td>rods, beams, springs</td>
<td>heat, energy</td>
</tr>
<tr>
<td>hydraulic</td>
<td>reservoirs, pumping stations, lakes</td>
<td>pipelines</td>
<td>fluid, oil</td>
</tr>
<tr>
<td>financial</td>
<td>stocks, currency</td>
<td>transactions</td>
<td>money</td>
</tr>
<tr>
<td>transportation</td>
<td>airports, rail yards, street intersections</td>
<td>highways, railbeds, airway routes</td>
<td>freight, vehicles, passengers</td>
</tr>
<tr>
<td>chemical</td>
<td>sites</td>
<td>bonds</td>
<td>energy</td>
</tr>
</tbody>
</table>

Applications

- Fisher market
- Network connectivity
- Bipartite matching
- Data mining
- Open-pit mining
- Airline scheduling
- Image processing
- Project selection
- Baseball elimination
- Network reliability
- Security of statistical data
- Distributed computing
- Egalitarian stable matching
- Distributed computing
- Many many more . . .
Max flow problem

- Directed graph (may have cycles)
- Two distinguished nodes: s = source, t = sink
- c(e) = capacity of arc e (integer)

Max flow network
Definition: s-t flow
- Assignment of integer "flow" ≥ 0 on each arc:
 - (Capacity) Can't exceed arc's capacity
 - (Conservation) flow in = flow out at any node $\neq s, t$
- Flow value
 = total flow into t = total flow out of s

Can we increase the flow value?
- Capacity and flow conservation constraints are satisfied
- Further increase in flow value?
Max flow problem

- Compute the maximum value of an s-t flow

Algorithms for max flow
First try: greedy

- Start with $f(e) = 0$ for all arcs e
- Repeat until stuck:
 - Find an s-t path where each edge has $f(e) < c(e)$
 - Push more flow along that path

Greedy doesn't work – why?

[Diagram showing flow network with greedy and optimal solutions]
Fix: residual graph

- A way of undoing previous flows

Ford-Fulkerson algorithm

- Iteratively find s-t paths that admit more flow in the residual graph
 - Such s-t paths: augmenting paths
- Push more flow along augmenting paths
- No further augmenting path?
 - Optimal solution!
Ford-Fulkerson Demo

Running time of Ford-Fulkerson

- At most nC iterations
- Total running time: $O(mnC)$
 - $n = \#$ of nodes
 - $m = \#$ of edges
 - $C = \text{max capacity}$
- Not strongly polynomial
 - There are strongly polynomial algorithms
Min cut problem

s-t cut

- Partition the nodes into two sets A and B such that s is in A and t is in B
- (A, B) is called an s-t cut
- Capacity of s-t cut (A, B)
 $\text{cap}(A, B) = \text{sum of capacities of arcs out of } A$

Capacity = $10 + 5 + 15 = 30$
s-t cut: more example

Capacity = 9 + 15 + 8 + 30 = 62

Note: there’s no flow here!

Min cut problem

- Find an s-t cut of minimum capacity

Capacity = 10 + 8 + 10 = 28
Max flow solution

- Max flow value is also 28!

Max flow vs. min cut
LP formulation: max flow

- Maximize: \(v(f) = \sum_{e \text{ out of } s} f(e) \)
- Subject to:
 \[
 0 \leq f(e) \leq c(e), \quad \forall e
 \]
 \[
 \sum_{e \text{ into } v} f(e) = \sum_{e \text{ out of } v} f(e), \quad \forall v \text{ except } s, t
 \]

Integrality theorem: if all capacities are integers, then there exists a max flow with all integer flows.

LP formulation: min cut

- Dual of max flow
- Weak duality: any flow \(\leq \) any cut capacity
 - Proof (on board) without using LP duality
- Strong duality: max flow = min cut capacity
 - Ford-Fulkerson’s proof without using LP duality
Max-flow min-cut theorem

- Ford & Fulkerson (1956)
- In any network, the value of the max flow is equal to the value of the min cut.

How to: max flow \rightarrow min cut

- Want an s-t cut or partition (A, B)
- $A = s$ and all nodes reachable from s in the final residual graph
- $B =$ rest of the nodes
Algorithm for Fisher Market

Max Flow

Reminder: Fisher’s linear case

- Model parameters (what’s given)
 - n divisible goods (1 unit each wlog) and n' buyers
 - e_i = buyer i’s budget (integral wlog)
 - u_{ij} = buyer i’s utility per unit of good j (integral wlog)
 - Linear utility functions

- Want (not given): equilibrium allocations
 - x_{ij} = amount of good j that i buys to maximize
 his/her utility $u_i(x) = \sum_{j=1}^{n} u_{ij} x_{ij}$
- Want (not given): equilibrium prices p_1, p_2, ..., p_n
- No deficit or surplus of any good
- No deficit or surplus of buyers’ budgets
Reminder: KKT conditions of Eisenberg-Gale convex program

- Optimal solutions x_{ij}’s and p_j’s must satisfy:

1. $\forall j \in A : p_j \geq 0$.
2. $\forall j \in A : p_j > 0 \Rightarrow \sum_{i \in A} x_{ij} = 1$.
3. $\forall i \in B, \forall j \in A : \frac{u_{ij}}{p_j} \leq \frac{\sum_{i \in A} u_{ij} x_{ij}}{e_i}$.
4. $\forall i \in B, \forall j \in A : x_{ij} > 0 \Rightarrow \frac{u_{ij}}{p_j} = \frac{\sum_{i \in A} u_{ij} x_{ij}}{e_i}$.

- No deficit or surplus of goods
- Can show no deficit or surplus of buyers’ budgets

Idea of the algorithm

- Look at individual optimization problem
- Buyer i’s optimization program:

$$\max \sum_j u_{ij} x_{ij}$$

s.t. $\sum_j p_j x_{ij} \leq e_i$

- Global constraint:

$$\forall j \sum_i x_{ij} = 1$$
Example

Buyers

<table>
<thead>
<tr>
<th>Money</th>
<th>Utilities</th>
<th>Prices (variable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$100</td>
<td>$10</td>
<td>$20</td>
</tr>
<tr>
<td>$60</td>
<td>$4</td>
<td>$40</td>
</tr>
<tr>
<td>$20</td>
<td>$2</td>
<td>$10</td>
</tr>
<tr>
<td>$140</td>
<td></td>
<td>$60</td>
</tr>
</tbody>
</table>

Goods

<table>
<thead>
<tr>
<th>Buyers</th>
<th>Goods</th>
</tr>
</thead>
<tbody>
<tr>
<td>$100</td>
<td>$20</td>
</tr>
<tr>
<td>$60</td>
<td>$40</td>
</tr>
<tr>
<td>$20</td>
<td>$10</td>
</tr>
<tr>
<td>$140</td>
<td>$60</td>
</tr>
</tbody>
</table>

Bang-per-buck = utility/price

<table>
<thead>
<tr>
<th>Buyers</th>
<th>Goods</th>
<th>BPB</th>
</tr>
</thead>
<tbody>
<tr>
<td>$100</td>
<td>$20</td>
<td>0.50</td>
</tr>
<tr>
<td>$60</td>
<td>$40</td>
<td>0.50</td>
</tr>
<tr>
<td>$20</td>
<td>$10</td>
<td>0.40</td>
</tr>
<tr>
<td>$140</td>
<td>$60</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Bang-per-buck = utility/price

<table>
<thead>
<tr>
<th>Buyers</th>
<th>Goods</th>
<th>BPB</th>
</tr>
</thead>
<tbody>
<tr>
<td>$100</td>
<td>10</td>
<td>0.50</td>
</tr>
<tr>
<td>$60</td>
<td>20</td>
<td>0.50</td>
</tr>
<tr>
<td>$20</td>
<td>20</td>
<td>0.40</td>
</tr>
<tr>
<td>$140</td>
<td>$60</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Utilities

Bang-per-buck = utility/price

<table>
<thead>
<tr>
<th>Buyers</th>
<th>Goods</th>
<th>BPB</th>
</tr>
</thead>
<tbody>
<tr>
<td>$100</td>
<td>10</td>
<td>0.50</td>
</tr>
<tr>
<td>$60</td>
<td>40</td>
<td>0.50</td>
</tr>
<tr>
<td>$20</td>
<td>10</td>
<td>0.40</td>
</tr>
<tr>
<td>$140</td>
<td>10</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Equality Subgraph
Equality subgraph

- Buyer is happiest when she can buy goods in equality subgraph
- How to maximize sales (market clearance) in the equality subgraph at a given price?

Use max flow! ("balanced flow" here)

Max flow

```
Max flow

Buyers Goods

100 60 20
140

20 40 10

Infinite capacity
```
Idea of the algorithm

Buyers may still have excess money

Increase prices to drain buyers’ excess money!

All goods are sold at these prices

Initialize

- All prices = \(\frac{1}{n} \), \(n = \# \) of goods
- Assume
 - Each buyer has integral amount of money
How to raise prices?

- We do not want to kill off any edge from the equality subgraph

\[\frac{u_{ij}}{p_j} = \frac{u_{ik}}{p_k} \]

\[\Rightarrow \frac{p_k}{p_j} = \frac{u_{ik}}{u_{ij}} \]

- Multiply prices by the same number \(x \)
 - Initially \(x = 1 \)

Algorithm

- Initially \(x = 1 \), then \(x \uparrow \)
 - How to increase \(x \) (Later)
Algorithm

- $x = 2$: A buyer’s surplus money = 0 (Event #1)

Algorithm

- Reinitialize $x = 1$, work the active part
- Terminate: All are frozen
Algorithm

- $x = 1.25$ (Event #2)

Note: In the original algorithm, the active buyers are partitioned into sets: max-surplus buyers and the rest (not shown here for presentation, but x is relevant to the max-surplus buyers).

Algorithm

- In case of event #2: “Unfreeze” the relevant part and recurse.
Question

Is this scenario possible?

No. Every buyer must have some goods that maximize BPB. Can’t freeze a set of goods unless all interested buyers of those goods run out of money.

More example

2 buyers, 2 goods
Initialize all prices to $\frac{1}{2}$
Compute a "balanced flow" (not shown here)
Find the buyer(s) with the max surplus money
Nothing frozen: No subset of goods for which all interested buyers run out of money

Increase prices of goods that the max-surplus buyers are interested in
$x > 0 \Rightarrow$ edge from 1 to 1 disappears
$x = 2 \Rightarrow$ New edge (event 2) from 2 to 2
Example (continued)

Increase prices of goods that the max-surplus buyers are interested in

- $x = 7\frac{1}{3} \Rightarrow$ All goods frozen \Rightarrow equilibrium
 - Note: all buyers run out of money

Running time

- We can compute x values at event #1 and #2 efficiently
- Balanced flow is polynomial, but not strongly polynomial
 - Running time depends on the amount of money each buyer has
 - $O(n^4 (\log n + n\log U + \log M))$ applications of max-flow
 - $n = \#$ of goods
 - $U = \max u_{ij}$ for any i and j
 - $M = \text{total amount of money of all buyers}$